Small scale model for CFD validation in DAF application

2001 ◽  
Vol 43 (8) ◽  
pp. 167-173 ◽  
Author(s):  
J. Hague ◽  
C. T. Ta ◽  
M. J. Biggs ◽  
J. A. Sattary

A laboratory model is used to measure the generic flow patterns in dissolved air flotation (DAF). The Perspex model used in this study allows the use of laser Doppler velocimetry (LDV), a non-invasive, high-resolution (±2 mm s−1) laser technique of flow velocity measurement. Measurement of flow velocity in the single-phase situation was first carried out. Air-saturated water was then supplied to the tank and measurements of bubble velocity in the two-phase system were made. Vertical flow re-circulation was observed in the flotation zone. In the bottom of the flotation zone (near the riser) secondary flow re-circulation was observed, but only in the two-phase system. Another phenomenon was the apparent movement of flow across the tank width, which may be due to lateral dispersion of the bubble cloud. Data from preliminary computational fluid dynamics (CFD) models were compared against this measured data in the case of the single-phase system. The CFD model incorporating a k-e model of turbulence was found to give closer agreement with the measured data than the corresponding laminar flow model. The measured velocity data will be used to verify two-phase computational fluid dynamics (CFD) models of DAF.

2018 ◽  
Vol 8 (3) ◽  
pp. 2897-2900
Author(s):  
F. P. Lucas ◽  
R. Huebner

This paper aims to apply computational fluid dynamics (CFD) to simulate air flow and air flow with water droplets, as a reasonable hypothesis for real flows, in order to evaluate a vertical separator vessel with inclined half-pipe inlet device (slope inlet). Thus, this type was compared to a separator vessel without inlet device (straight inlet). The results demonstrated a different performance for the two types in terms of air distribution and liquid removal efficiency.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2356
Author(s):  
Andres Mauricio Zapata Rivera ◽  
Joel Ducoste ◽  
Miguel Ricardo Peña ◽  
Margarita Portapila

The facultative lagoon hydrodynamics has been evaluated using computational fluid dynamics tools, however, little progress has been made in describing the transport of suspended solids within these systems, and their effects on fluid hydrodynamics. Traditionally, CFD models have been built using pure water. In this sense, the novelty in this study was to evaluate the influence of suspended solids transport on the hydrodynamics of an facultative lagoon. Two three-dimensional CFD models were developed, a single-phase model (pure water) and a two-phase model (water and suspended solids), for a conventional FL in Ginebra, Valle del Cauca, Colombia. Model results were compared with experimental tracer studies, displaying different tracer dispersion characteristics. Differences in the fluid velocity field were identified when suspended solids were added to the simulation. The fluid velocities in the single-phase model were greater than the fluid velocities obtained in the two-phase model, (0.127 m·s−1 and 0.115 m·s−1, respectively). Additionally, the dispersion number of each model showed that the single-phase model (0.478) exhibited a better behavior of complete mixing reactor than the two-phase model (0.403). These results can be attributed to the effect of the drag and slip forces of the solids on the velocity of the fluid. In conclusion, the fluid of FL in these models is better represented as a two-phase fluid in which the particle–fluid interactions are represented by drag and slip forces.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


Author(s):  
Jian-Xun Wang ◽  
Christopher J. Roy ◽  
Heng Xiao

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.


2015 ◽  
Vol 73 (5) ◽  
pp. 969-982 ◽  
Author(s):  
Edward Wicklein ◽  
Damien J. Batstone ◽  
Joel Ducoste ◽  
Julien Laurent ◽  
Alonso Griborio ◽  
...  

Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.


2021 ◽  
Vol 8 (02) ◽  
pp. 73-78
Author(s):  
Hammad ur Rahman ◽  
◽  
Syed Faisal Shah ◽  
Abdullah Jamshaid ◽  
Muhammad Usama ◽  
...  

Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Sign in / Sign up

Export Citation Format

Share Document