Analysis of System Reliability Using Intuitionistic Fuzzy Sets and Dempster–Shafer Theory(DST)

2020 ◽  
Vol 25 (2) ◽  
pp. 35-53
Author(s):  
Sungwoon Choi
Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1485
Author(s):  
Pavel Sevastjanov ◽  
Ludmila Dymova ◽  
Krzysztof Kaczmarek

In this short paper, a critical analysis of the Neutrosophic, Pythagorean and some other novel fuzzy sets theories foundations is provided, taking into account that they actively used for the solution of the decision-making problems. The shortcomings of these theories are exposed. It is stated that the independence hypothesis, which is a cornerstone of the Neutrosophic sets theory, is not in line with common sense and therefore leads to the paradoxical results in the asymptotic limits of this theory. It is shown that the Pythagorean sets theory possesses questionable foundations, the sense of which cannot be explained reasonably. Moreover, this theory does not completely solve the declared problem. Similarly, important methodological problems of other analyzed theories are revealed. To solve the interior problems of the Atanassov’s intuitionistic fuzzy sets and to improve upon them, this being the reason most of the criticized novel sets theories were developed, an alternative approach based on extension of the intuitionistic fuzzy sets in the framework of the Dempster–Shafer theory is proposed. No propositions concerned with the improvement of the Cubic sets theory and Single-Valued Neutrosophic Offset theory were made, as their applicability was shown to be very dubious. In order to stimulate discussion, many statements are deliberately formulated in a hardline form.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Miin-Shen Yang ◽  
Zahid Hussain ◽  
Mehboob Ali

Belief and plausibility measures in Dempster–Shafer theory (DST) and fuzzy sets are known as different approaches for representing partial, uncertainty, and imprecise information. There are several generalizations of DST to fuzzy sets proposed in the literature. But, less generalization of DST to intuitionistic fuzzy sets (IFSs), that can somehow present imprecise information better than fuzzy sets, was proposed. In this paper, we first propose a simple and intuitive way to construct a generalization of DST to IFSs with degrees of belief and plausibility in terms of degrees of membership and nonmembership, respectively. We then give belief and plausibility measures on IFSs and construct belief-plausibility intervals (BPIs) of IFSs. Based on the constructed BPIs, we first use Hausdorff metric to define the distance between two BPIs and then establish similarity measures in the generalized context of DST to IFSs. By employing the techniques of ordered preference similarity to ideal solution (TOPSIS), the proposed belief and plausibility measures on IFSs in the framework of DST enable us to construct a belief-plausibility TOPSIS for solving multicriteria decision-making problems. Some examples are presented to manifest that the proposed method is reasonable, applicable, and well suited in the environment of IFSs in the framework of generalization of DST.


2019 ◽  
Vol 10 (3) ◽  
pp. 445-453
Author(s):  
R. Nagalingam ◽  
S. Rajaram

Author(s):  
Renáta Bartková ◽  
Beloslav Riečan ◽  
Anna Tirpáková

The reference considers probability theory in two main domains: fuzzy set theory, and quantum models. Readers will learn about the Kolmogorov probability theory and its implications in these two areas. Other topics covered include intuitionistic fuzzy sets (IF-set) limit theorems, individual ergodic theorem and relevant statistical applications (examples from correlation theory and factor analysis in Atanassov intuitionistic fuzzy sets systems, the individual ergodic theorem and the Poincaré recurrence theorem). This book is a useful resource for mathematics students and researchers seeking information about fuzzy sets in quantum spaces.


Sign in / Sign up

Export Citation Format

Share Document