scholarly journals BOGUCHAN EARTHQUAKE on JANUARY 17, 2014 with КР=13.3, Mw=4.3, I0=7 (Siberian Platform)

Author(s):  
A. Seredkina ◽  
V. Melnikova ◽  
N. Gileva ◽  
Ya Radziminovich

We consider the Boguchan January 17, 2014 earthquake(Mw=4.3) occurred on the Siberian Platform in the area of the sublongitudinal part of the Angara River. Instrumental and macroseismic data on this seismic event, tectonic features and deep structure of the crust within its source area are analyzed. Seismic moment tensor and hypocentral depth of the earthquake are calculated from its surface wave amplitude spectra. It has been shown that the concentration and relaxation of the tectonic stress in the source area are likely to be conditioned by velocity heterogeneities in the upper and middle crust. The obtained facts evidence that the study earthquake, most probably, is not connected with filling of the Angara cascade of water reservoirs.

Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
Ya. Radziminovich ◽  
A. Filippova

We consider September 2, 2015, Mw=5.1 Tallay earthquake occurred in the previously aseismic area of the North-Muya Ridge adjoining to the Muya-Kuanda basin from the north. Instrumental and macroseismic data on this seismic event are presented. Its seismic moment tensor is calculated from surface wave amplitude spectra. New data on strong ground motions are obtained within the north-eastern flank of the Baikal rift. The Tallay earthquake is found to be connected with seismogenic renewal of the second-order multidirectional faults activated in the rift stress field.


2016 ◽  
Vol 59 (3) ◽  
Author(s):  
Fabrizio Bernardi ◽  
Maria Grazia Ciaccio ◽  
Barbara Palombo ◽  
Graziano Ferrari

<p>In this paper we present a new study on the High Tiber Valley earthquake occurred on April 26, 1917. Using the digitized data from mechanical seismograph records, we computed the source parameters like focal mechanism and moment magnitude from moment tensor (MT). The study of historical earthquakes from an instrumental perspective is crucial because of the complexity of problems associated with the study of seismograms of moderate to large earthquakes occurred from the late 19th century until the early 1960s. Since historical earthquake records show significant uncertainties in phase arrival times and have been recorded by seismograph generally with short natural period, we developed a code to compute the MT based on a forward modeling technique, which uses the amplitude spectra of the full waveform length and the first P-arrival polarities to constrain the P- and T-axes. The best solution is determined by the best fit between the observed and synthetic amplitude spectra and from the coherency between the observed and the theoretical first P-arrival polarities. The 1917 High Tiber Valley earthquake is one of the most important 20th century earthquake occurred in the Italian Peninsula for which the focal mechanism and moment magnitude from seismic records are not available. Additionally, we apply a multidisciplinary approach to characterize the source of this earthquake, combining instrumental, macroseismic, geological and tectonic data and investigations. The computed MT results in a north-south normal fault mechanism (strike: 147°, dip: 29°, slip: −94°), which is consistent with the strike estimated from the macroseismic data (157°). The moment magnitude calculated from the MT and that derived from the macroseismic data are M<span><sub>w</sub></span>=5.5±0.2 and M<span><sub>w</sub></span>=5.9±0.1, respectively.</p>


Author(s):  
Ya. Radziminovich ◽  
V. Melnikova ◽  
N. Gileva ◽  
A. Filippova

The paper considers three relatively strong earthquakes that occurred in 2015 in the northern Lake Baikal region: July 7 Upper Akuli earthquake (Mw=4.6) with the epicenter at the headwaters of the Akuli River, and September 25 Gulonga-I (Mw=4.7) and December 13 Gulonga-II earthquakes (Mw=4.6) with the epicenters near the mountain lakes Gulonga. Instrumental and macroseismic data on these seismic events are reported. A seismic moment tensor, calculated from surface wave records, shows normal fault focal mechanisms for Upper Akuli and Gulonga-II earthquakes and strike-slip movements in the source of the Gulonga-I seismic event. The results obtained could be used in further studies of seismic zoning and seismic hazard assessment in the northern Lake Baikal region.


2007 ◽  
Author(s):  
S Ford ◽  
D Dreger ◽  
W Walter ◽  
M Hellweg ◽  
R Urhammer

2016 ◽  
Vol 87 (4) ◽  
pp. 964-976 ◽  
Author(s):  
Grzegorz Kwiatek ◽  
Patricia Martínez‐Garzón ◽  
Marco Bohnhoff

2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Paola Cusano ◽  
Simona Petrosino ◽  
Francesca Bianco ◽  
Edoardo Del Pezzo

<p>The typical earthquakes occurring at Mt. Vesuvius are Volcano-Tectonic. On July 20, 2003, an unusual earthquake with low and narrow frequency content was detected. The seismograms presented an emergent onset and a nearly monochromatic spectrum at all stations of the Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) seismic network. The event was located at about 4 km b.s.l. close to the crater axis and an equivalent duration magnitude of 0.6 was estimated. The nature of this event was investigated by comparing its features with those of two typical Volcano-Tectonic earthquakes occurred inside the same source volume. We compared the spectral content calculating the spectrograms and the coda patterns using the Hilbert Transform. A Seismic Moment Tensor inversion was performed on the low frequency earthquake. The focal mechanisms for the two Volcano-Tectonic earthquakes were estimated with a classical technique and resulted compatible with the stress field acting on the volcano. Taking into account the clear differences with the typical Volcano-Tectonic events as well as the peculiarities retrieved from our analyses (monochromatic, low frequency spectral content, and sustained coda) and also some geochemical observations, we classify the unusual low frequency seismic event detected at Mt. Vesuvius as Long Period earthquake and propose that its origin could be linked to a pressure drop in the deep hydrothermal system.</p>


Sign in / Sign up

Export Citation Format

Share Document