scholarly journals An Optimal Algorithm for a Fuzzy Transportation Problem

2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Rasha Jalal Mitlif ◽  
Mohammed Rasheed ◽  
Suha Shihab

This paper deals with the optimal approximate solution to a special type of optimization problem called a fuzzy transportation problem using pentagonal fuzzy numbers. The values of the cost, supply, and demand for fuzzy transportation problems are taken as pentagonal fuzzy numbers. The pentagonal fuzzy numbers are converted into crisp values using a novel suggested ranking function. By comparing this with the conventional ranking methods, we can achieve better results with the aid of the proposed new ranking method. Vogel’s Approximation Method is then applied to obtain the solution. Several experiments have been conducted in order to investigate the suggested technique.

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
C. Veeramani ◽  
M. Joseph Robinson ◽  
S. Vasanthi

The cost of goods per unit transported from the source to the destination is considered to be fixed regardless of the number of units transported. But, in reality, the cost is often not fixed. Quantity discount is often allowed for large shipments. Furthermore, the transportation cost and the price break quantities are not deterministic. In this study, we introduce the concept of Value- and Ambiguity-based approach for solving the intuitionistic fuzzy transportation problem with total quantity discounts and incremental quantity discounts. Here, the cost and quantity price breakpoints are represented by trapezoidal intuitionistic fuzzy numbers. The Values and Ambiguities are defined as the degree of acceptance and rejection for trapezoidal intuitionistic fuzzy numbers. The trapezoidal intuitionistic fuzzy transportation problem is converted to a parametric transportation problem based on their Value indices and Ambiguity indices. Then, for different Values of the parameter, the transformed problem is reduced to the linear programming problem. Then, the linear programming problem is solved by using the classical methods. The proposed method is demonstrated with a numerical example. In conclusion, the intuitionistic fuzzy transportation problem with total quantity discounts is compared with the intuitionistic fuzzy transportation problem with incremental quantity discounts.


Author(s):  
Arun Patil ◽  
S. B. Chandgude

In this paper, a method is proposed to find the fuzzy optimal solution of fuzzy transportation model by representing all the parameters as trapezoidal fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem is solved by using the proposed method and the results are obtained. The proposed method is easy to understand, and to apply for finding the fuzzy optimal solution of fuzzy transportation models in real life situations. However, we propose the method of fuzzy modified distribution for finding out the optimal solution for minimizing the cost of total fuzzy transportation. The advantages of the proposed method are also discussed.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Hamiden Abd El-Wahed Khalifa

Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach.


Author(s):  
Amit Kumar ◽  
Amarpreet Kaur

There are several methods, in literature, for finding the fuzzy optimal solution of fully fuzzy transportation problems (transportation problems in which all the parameters are represented by fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings, two new methods (based on fuzzy linear programming formulation and classical transportation methods) are proposed to find the fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as trapezoidal fuzzy numbers. The advantages of the proposed methods over existing methods are also discussed. To illustrate the proposed methods a fuzzy transportation problem (FTP) is solved by using the proposed methods and the obtained results are discussed. The proposed methods are easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems occurring in real life situations.


Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

In this chapter, the authors propose a new approach to analyze the Solid Transportation Problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming, which is incorporated in three constraints, namely sources, destinations, and capacities constraints, followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into a solid transportation problem, and this new problem is called Multi-Choice Stochastic Solid Transportation Problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique that will select an appropriate choice from a set of multi-choice, which optimize the objective function. The stochastic constraints of STP converts into deterministic constraints by stochastic programming approach. Finally, the authors construct a non-linear programming problem for MCSSTP, and by solving it, they derive an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


Author(s):  
Gurupada Maity ◽  
Sankar Kumar Roy

This paper analyzes the study of Multiobjective Transportation Problem (MOTP) under the consideration of fuzzy decision variable. Usually, the decision variable in a Transportation Problem is taken as real variable. But, in this paper, the decision variable in each node is selected from a set of multi-choice fuzzy numbers. Inclusion of multiple objectives into transportation problem with fuzzy decision variable makes it a Multiobjective Fuzzy Transportation Problem (MOFTP). In this paper, a new formulation of mathematical model of MOFTP with fuzzy goal of each objective function is enlisted. Thereafter the solution technique of the formulated model is described through multi-choice goal programming approach. Finally, a numerical example is presented to show the feasibility and usefulness of this article.


2018 ◽  
Vol 15 (01) ◽  
pp. 95-112 ◽  
Author(s):  
Abhishekh ◽  
A. K. Nishad

To the extent of our knowledge, there is no method in fuzzy environment to solving the fully LR-intuitionistic fuzzy transportation problems (LR-IFTPs) in which all the parameters are represented by LR-intuitionistic fuzzy numbers (LR-IFNs). In this paper, a novel ranking function is proposed to finding an optimal solution of fully LR-intuitionistic fuzzy transportation problem by using the distance minimizer of two LR-IFNs. It is shown that the proposed ranking method for LR-intuitionistic fuzzy numbers satisfies the general axioms of ranking functions. Further, we have applied ranking approach to solve an LR-intuitionistic fuzzy transportation problem in which all the parameters (supply, cost and demand) are transformed into LR-intuitionistic fuzzy numbers. The proposed method is illustrated with a numerical example to show the solution procedure and to demonstrate the efficiency of the proposed method by comparison with some existing ranking methods available in the literature.


Author(s):  
Somnath Maity ◽  
Sankar Kumar Roy

In this paper, a new approach is introduced to solve transportation problem with type-2-fuzzy variables. In most of the real-life situations, the available data do not happen to be crisp in nature. It gives rise to the fuzzy transportation problem (FTP). This proposed approach concentrates on the problem when the vertical slices of type-2-fuzzy sets (T2FSs) are trapezoidal fuzzy numbers (TFNs). The original problem reduces to three different linear programming problems (LPPs) which are solved using the simplex algorithm. Then the effectiveness of this paper is discussed with numerical example. In conclusion, the significance of the paper and the scope of future study are discussed.


Author(s):  
Ahmed Hamoud ◽  
Kirtiwant Ghadle ◽  
Priyanka Pathade

<p>In the present article, a mixed type transportation problem is considered. Most of the transportation problems in real life situation have mixed type transportation problem this type of transportation problem cannot be solved by usual methods. Here we attempt a new concept of Best Candidate Method (BCM) to obtain the optimal solution. To determine the compromise solution of balanced mixed fuzzy transportation problem and unbalanced mixed fuzzy transportation problem of trapezoidal and trivial fuzzy numbers with new BCM solution procedure has been applied. The method is illustrated by the numerical examples.</p>


Sign in / Sign up

Export Citation Format

Share Document