scholarly journals Goal programming approach for solving heptagonal fuzzy transportation problem under budgetry constraint

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Hamiden Abd El-Wahed Khalifa

Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach.

Author(s):  
Arun Patil ◽  
S. B. Chandgude

In this paper, a method is proposed to find the fuzzy optimal solution of fuzzy transportation model by representing all the parameters as trapezoidal fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem is solved by using the proposed method and the results are obtained. The proposed method is easy to understand, and to apply for finding the fuzzy optimal solution of fuzzy transportation models in real life situations. However, we propose the method of fuzzy modified distribution for finding out the optimal solution for minimizing the cost of total fuzzy transportation. The advantages of the proposed method are also discussed.


Author(s):  
Amit Kumar ◽  
Amarpreet Kaur

There are several methods, in literature, for finding the fuzzy optimal solution of fully fuzzy transportation problems (transportation problems in which all the parameters are represented by fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings, two new methods (based on fuzzy linear programming formulation and classical transportation methods) are proposed to find the fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as trapezoidal fuzzy numbers. The advantages of the proposed methods over existing methods are also discussed. To illustrate the proposed methods a fuzzy transportation problem (FTP) is solved by using the proposed methods and the obtained results are discussed. The proposed methods are easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems occurring in real life situations.


Author(s):  
Ahmed Hamoud ◽  
Kirtiwant Ghadle ◽  
Priyanka Pathade

<p>In the present article, a mixed type transportation problem is considered. Most of the transportation problems in real life situation have mixed type transportation problem this type of transportation problem cannot be solved by usual methods. Here we attempt a new concept of Best Candidate Method (BCM) to obtain the optimal solution. To determine the compromise solution of balanced mixed fuzzy transportation problem and unbalanced mixed fuzzy transportation problem of trapezoidal and trivial fuzzy numbers with new BCM solution procedure has been applied. The method is illustrated by the numerical examples.</p>


2017 ◽  
Vol 09 (06) ◽  
pp. 1750076 ◽  
Author(s):  
Gurupada Maity ◽  
Sankar Kumar Roy

This paper explores the study of fuzzy transportation problem (FTP) using multi-choice goal-programming approach. Generally, the decision variable in transportation problem (TP) is considered as real variable, but here the decision variable in each node is chosen from a set of multi-choice fuzzy numbers. Here, we formulate a mathematical model of FTP considering fuzzy goal to the objective function. Thereafter, the solution procedure of the proposed model is developed through multi-choice goal programming approach. The proposed approach is not only improved the applicability of goal programming in real world situations but also provided useful insight about the solution of a new class of TP. A real-life numerical experiment is incorporated to analyze the feasibility and usefulness of this paper. The conclusions about our proposed work including future studies are discussed last.


Author(s):  
Amit Kumar ◽  
Amarpreet Kaur

There are several methods, in literature, for finding the fuzzy optimal solution of fully fuzzy transportation problems (transportation problems in which all the parameters are represented by fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings, two new methods (based on fuzzy linear programming formulation and classical transportation methods) are proposed to find the fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as trapezoidal fuzzy numbers. The advantages of the proposed methods over existing methods are also discussed. To illustrate the proposed methods a fuzzy transportation problem (FTP) is solved by using the proposed methods and the obtained results are discussed. The proposed methods are easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems occurring in real life situations.


1998 ◽  
Vol 2 (1) ◽  
pp. 65-104 ◽  
Author(s):  
V. Adlakha ◽  
H. Arsham

In a fast changing global market, a manager is concerned with cost uncertainties of the cost matrix in transportation problems (TP) and assignment problems (AP).A time lag between the development and application of the model could cause cost parameters to assume different values when an optimal assignment is implemented. The manager might wish to determine the responsiveness of the current optimal solution to such uncertainties. A desirable tool is to construct a perturbation set (PS) of cost coeffcients which ensures the stability of an optimal solution under such uncertainties.The widely-used methods of solving the TP and AP are the stepping-stone (SS) method and the Hungarian method, respectively. Both methods fail to provide direct information to construct the needed PS. An added difficulty is that these problems might be highly pivotal degenerate. Therefore, the sensitivity results obtained via the available linear programming (LP) software might be misleading.We propose a unified pivotal solution algorithm for both TP and AP. The algorithm is free of pivotal degeneracy, which may cause cycling, and does not require any extra variables such as slack, surplus, or artificial variables used in dual and primal simplex. The algorithm permits higher-order assignment problems and side-constraints. Computational results comparing the proposed algorithm to the closely-related pivotal solution algorithm, the simplex, via the widely-used pack-age Lindo, are provided. The proposed algorithm has the advantage of being computationally practical, being easy to understand, and providing useful information for managers. The results empower the manager to assess and monitor various types of cost uncertainties encountered in real-life situations. Some illustrative numerical examples are also presented.


2022 ◽  
Vol 11 (1) ◽  
pp. 0-0

In this study, a fuzzy cooperative continuous static game (PQFCCSG) with n players having fuzzy parameters in all of the cost functions and the right- hand-side of constraints is characterized. Their fuzzy parameters are represented by piecewise quadratic fuzzy numbers. The α-pareto optimal solution concept is specified. In addition, the stability sets of the first and second kind without differentiability are conceptualized and established. An illustrated numerical example is discussed for proper understanding and interpretation of the proposed concept.


Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

In this chapter, the authors propose a new approach to analyze the Solid Transportation Problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming, which is incorporated in three constraints, namely sources, destinations, and capacities constraints, followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into a solid transportation problem, and this new problem is called Multi-Choice Stochastic Solid Transportation Problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique that will select an appropriate choice from a set of multi-choice, which optimize the objective function. The stochastic constraints of STP converts into deterministic constraints by stochastic programming approach. Finally, the authors construct a non-linear programming problem for MCSSTP, and by solving it, they derive an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


Author(s):  
Gurupada Maity ◽  
Sankar Kumar Roy

This paper analyzes the study of Multiobjective Transportation Problem (MOTP) under the consideration of fuzzy decision variable. Usually, the decision variable in a Transportation Problem is taken as real variable. But, in this paper, the decision variable in each node is selected from a set of multi-choice fuzzy numbers. Inclusion of multiple objectives into transportation problem with fuzzy decision variable makes it a Multiobjective Fuzzy Transportation Problem (MOFTP). In this paper, a new formulation of mathematical model of MOFTP with fuzzy goal of each objective function is enlisted. Thereafter the solution technique of the formulated model is described through multi-choice goal programming approach. Finally, a numerical example is presented to show the feasibility and usefulness of this article.


2018 ◽  
Vol 15 (01) ◽  
pp. 95-112 ◽  
Author(s):  
Abhishekh ◽  
A. K. Nishad

To the extent of our knowledge, there is no method in fuzzy environment to solving the fully LR-intuitionistic fuzzy transportation problems (LR-IFTPs) in which all the parameters are represented by LR-intuitionistic fuzzy numbers (LR-IFNs). In this paper, a novel ranking function is proposed to finding an optimal solution of fully LR-intuitionistic fuzzy transportation problem by using the distance minimizer of two LR-IFNs. It is shown that the proposed ranking method for LR-intuitionistic fuzzy numbers satisfies the general axioms of ranking functions. Further, we have applied ranking approach to solve an LR-intuitionistic fuzzy transportation problem in which all the parameters (supply, cost and demand) are transformed into LR-intuitionistic fuzzy numbers. The proposed method is illustrated with a numerical example to show the solution procedure and to demonstrate the efficiency of the proposed method by comparison with some existing ranking methods available in the literature.


Sign in / Sign up

Export Citation Format

Share Document