scholarly journals Dominating Cocoloring of Graphs

A -cocolouring of a graph is a partition of the vertex set into subsets such that each set induces either a clique or an independent set in . The cochromatic number of a graph is the least such that has a -cocolouring of . A set is a dominating set of if for each , there exists a vertex such that is adjacent to . The minimum cardinality of a dominating set in is called the domination number and is denoted by . Combining these two concepts we have introduces two new types of cocoloring viz, dominating cocoloring and -cocoloring. A dominating cocoloring of is a cocoloring of such that atleast one of the sets in the partition is a dominating set. Hence dominating cocoloring is a conditional cocoloring. The dominating co-chromatic number is the smallest cardinality of a dominating cocoloring of .(ie) has a dominating cocoloring with -colors .

2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


Author(s):  
P. Roushini Leely Pushpam ◽  
K. Priya Bhanthavi

A set [Formula: see text] of vertices in a graph [Formula: see text] is called a dominating set if every vertex in [Formula: see text] is adjacent to a vertex in [Formula: see text]. An independent transversal dominating set in a graph [Formula: see text] is a dominating set which intersects every maximum independent set of [Formula: see text]. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of [Formula: see text] denoted by [Formula: see text]. In this paper, we characterize those trees whose independent transversal domination number does not alter owing to the deletion of a vertex.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


Throughout this paper, consider G = (V,E) as a connected graph. A subset D of V(G) is a set dominating set of G if for every M  V / D there exists a non-empty set N of D such that the induced sub graph <MUN> is connected. A subset D of the vertex set of a graph G is called a co-secure dominating set of a graph if D is a dominating set, and for each u' D there exists a vertex v'V / D such that u'v' is an edge and D \u'v' is a dominating set. A co-secure dominating set D is a co-secure set dominating set of G if D is also a set dominating set of G. The co-secure set domination number G s cs γ is the minimum cardinality of a co-secure set dominating set. In this paper we initiate the study of this new parameter & also determine the co-secure set domination number of some standard graphs and obtain its bounds.


Author(s):  
B. Senthilkumar ◽  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

For a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is the total edge dominating set if every edge in [Formula: see text] is adjacent to at least one edge in [Formula: see text]. The minimum cardinality of a total edge dominated set, denoted by [Formula: see text], is called the total edge domination number of a graph [Formula: see text]. We prove that for every tree [Formula: see text] of diameter at least two with [Formula: see text] leaves and [Formula: see text] support vertices we have [Formula: see text], and we characterize the trees attaining each of the bounds.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 304
Author(s):  
Mihai Talmaciu ◽  
Luminiţa Dumitriu ◽  
Ioan Şuşnea ◽  
Victor Lepin ◽  
László Barna Iantovics

The weighted independent set problem on P 5 -free graphs has numerous applications, including data mining and dispatching in railways. The recognition of P 5 -free graphs is executed in polynomial time. Many problems, such as chromatic number and dominating set, are NP-hard in the class of P 5 -free graphs. The size of a minimum independent feedback vertex set that belongs to a P 5 -free graph with n vertices can be computed in O ( n 16 ) time. The unweighted problems, clique and clique cover, are NP-complete and the independent set is polynomial. In this work, the P 5 -free graphs using the weak decomposition are characterized, as is the dominating clique, and they are given an O ( n ( n + m ) ) recognition algorithm. Additionally, we calculate directly the clique number and the chromatic number; determine in O ( n ) time, the size of a minimum independent feedback vertex set; and determine in O ( n + m ) time the number of stability, the dominating number and the minimum clique cover.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


Sign in / Sign up

Export Citation Format

Share Document