scholarly journals Enhancing radial distribution system performance by optimal placement of DSTATCOM

Author(s):  
S. F. Mekhamer ◽  
R. H. Shehata ◽  
A. Y. Abdelaziz ◽  
M. A. Al-Gabalawy

In this paper, A novel modified optimization method was used to find the optimal location and size for placing distribution Static Compensator in the radial distribution test feeder in order to improve its performance by minimizing the total power losses of the test feeder, enhancing the voltage profile and reducing the costs. The modified grey wolf optimization algorithm is used for the first time to solve this kind of optimization problem. An objective function was developed to study the radial distribution system included total power loss of the system and costs due to power loss in system. The proposed method is applied to two different test distribution feeders (33 bus and 69 bus test systems) using different Dstatcom sizes and the acquired results were analyzed and compared to other recent optimization methods applied to the same test feeders to ensure the effectiveness of the used method and its superiority over other recent optimization mehods. The major findings from obtained results that the applied technique found the most minimized total power loss in system ,the best improved voltage profile and most reduction in costs due power loss compared to other methods .

A huge review on greatest allocation of Distribution Static Compensator (DSTATCOM) strategies in Radial Distribution system (RDS) device for compensation of reactive power (Q), mitigation of electricity losses and enhancement in voltage profile is presented. DSTATCOM compensates bus voltage to restriction the strength factor, in addition with energetic and additionally reactive power flows in the RDS. It can additionally provide immediate and non-stop capacitive (C) and inductive (L) mode compensation. This system also injects quantity of lead or lagging compensating current, when it is connected with a same load or varying load. Various IEEE buses are used for checking the achievability of the optimization methods in distribution system. In few papers the presented approach is evaluated through evaluating it with previous techniques and benefits are shown by means of simulation results.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Waseem Haider ◽  
S Jarjees Ul Hassan ◽  
Arif Mehdi ◽  
Arif Hussain ◽  
Gerardo Ondo Micha Adjayeng ◽  
...  

Power loss and voltage instability are major problems in distribution systems. However, these problems are typically mitigated by efficient network reconfiguration, including the integration of distributed generation (DG) units in the distribution network. In this regard, the optimal placement and sizing of DGs are crucial. Otherwise, the network performance will be degraded. This study is conducted to optimally locate and sizing of DGs into a radial distribution network before and after reconfiguration. A multi-objective particle swarm optimization algorithm is utilized to determine the optimal placement and sizing of the DGs before and after reconfiguration of the radial network. An optimal network configuration with DG coordination in an active distribution network overcomes power losses, uplifts voltage profiles, and improves the system stability, reliability, and efficiency. For considering the actual power system scenarios, a penalty factor is also considered, this penalty factor plays a crucial role in the minimization of total power loss and voltage profile enhancement. The simulation results showed a significant improvement in the percentage power loss reduction (32% and 68.05% before and after reconfiguration, respectively) with the inclusion of DG units in the test system. Similarly, the minimum bus voltage of the system is improved by 4.9% and 6.53% before and after reconfiguration, respectively. The comparative study is performed, and the results showed the effectiveness of the proposed method in reducing the voltage deviation and power loss of the distribution system. The proposed algorithm is evaluated on the IEEE-33 bus radial distribution system, using MATLAB software.


Author(s):  
S. Bhongade ◽  
Sachin Arya

The work presented in this paper is carried out with the objective of identifying the optimal location and size (Kvar ratings) of shunt capacitors to be placed in radial distribution system, to have overall economy considering the saving due to energy loss minimization. To achieve this objective, a two stage methodology is adopted in this paper. In the first stage, the base case load flow of uncompensated distribution system is carried out. On the basis of base case load flow solution, Nominal voltage magnitudes and Loss Sensitivity Factors are calculated and the weak buses are selected for capacitor placement.In the second stage, Particle Swarm Optimization (PSO) algorithm is used to identify the size of the capacitors to be placed at the selected buses for minimizing the power loss. The developed algorithm is tested for 10-bus, 34-bus and 85-bus Radial Distribution Systems. The results show that there has been an enhancement in voltage profile and reduction in power loss thus resulting in much annual saving.


At present the green environment plays a crucial part in fighting against the global warming. The Electric Vehicles which are eco-friendly provides the solution for these environmental issues which promotes low carbon emission. In the present scenario variation of the power flow and voltage profile at specific nodal junctions in a radial distribution system, when Electric Vehicle has been connected as a load is essential This paper shows the potential drop analysis on a distribution system with Electric Vehicle as a load. The results provide the total real power loss, total reactive power loss occurs in the radial test bus system and the voltage magnitude at nodes for an IEEE standard bus system. The Backward/Forward sweep method has been implemented on IEEE test bus radial distribution system. Various types of loads such as residential, commercial, and industrial with Electric Vehicles are considered for testing. The results indicate that a drop in voltage when Electric Vehicles has been integrated into the grid along with other consumers. The programming results has been compared with standard values and found to be satisfactory. Suggestions’ for improving the voltage profile had also included in this paper.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3182
Author(s):  
Afroz Alam ◽  
Mohd Tariq ◽  
Mohammad Zaid ◽  
Preeti Verma ◽  
Marwan Alsultan ◽  
...  

There is a need for the optimal positioning of protective devices to maximize customers satisfaction per their demands. Such arrangement advances the distribution system reliability to maximum achievable. Thus, radial distribution system (RDS) reliability can be improved by placing reclosers at suitable feeder sections. This article presents comprehensive details of an attempt to determine the reclosers’ optimal location in an RDS to maximize the utility profit by reliability improvement. Assessment of different reliability indices such as SAIDI, SAIFI, CAIFI, CAIDI, etc., with recloser placement, exhibits a considerable improvement in these indices in contrast with the absence of recloser. Consequently, a new bidirectional formulation has been proposed for the optimized arrangement of reclosers’. This formulation efficiently handles the bidirectional power flow, resulting from distributed generation (DG) unit (s) in the system. The proposed model has been solved for a test system by utilizing the Genetic algorithm (GA) optimization method. Later, test results conclude that reclosers’ optimal placement contributes significantly towards utility profit with minimum investment and outage costs.


2019 ◽  
Vol 8 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Mahesh Kumar ◽  
Bhagwan Das ◽  
Mazhar Hussain Baloch ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
...  

The electricity demand increment, fossil fuel depletion, and environmental degradation open the interest of power utilities to utilize the distributed generation (DG) and distributed-static compensator (DSTATCOM) in the distribution system. The optimal placement and sizing of these generations have positive benefits, whereas non-optimal placement and size may worsen the existing operational characteristics of the distribution system. Therefore, this article presents a new methodology for optimal placement and sizing of distributed generation and distributed-static compensator in a radial distribution system. Moreover, a short-term planning has been made for power loss reduction with existing and increased load growth using particle swarm optimization (PSO) algorithm. The performance of proposed methodology is tested using different case studies on standard IEEE 33 bus system (RDS). The measured results are also compared with other literature methods and it is revealed that the proposed method gives more significant results.


2012 ◽  
Vol 1 (2) ◽  
pp. 56 ◽  
Author(s):  
M. Rostamzadeh ◽  
K. Valipour ◽  
S. J. Shenava ◽  
M. Khalilpour ◽  
N. Razmjooy

This paper proposes an Imperialist Competitive Algorithm (ICA) for optimal multiple distributed generations (DGs) placement and sizing in a distribution system. The objective is to minimize the total real power losses and improve the voltage profile within real and reactive power generation and voltage limits. Three types of DG are considered and the ICA is used to find the better sizes and locations of DGs for maximum real power losses reduction and voltage improvement for given number of DG units in each type. Both integer and continuous variables are considered in ICA, integer variable for locations and continues variable for sizes. The total real power losses and voltage profile evaluation are based on a power flow method for radial distribution system with the representation of DGs. The proposed method has been demonstrated on 33 bus radial distribution system. The efficiency of the ICA in reducing the total power losses and improving voltage is validated by comparing the obtained results with Particle Swarm Optimization (PSO) algorithm.


Reconfiguration is a process that supports to eliminate the power loss from a distribution network and this process have the capability to reduce the losses up to a specific point. Additionally, loss minimization may be calculated through the presentation of Distributed Generation (DG) units. Conversely, the incorporation of DG into the distribution network at an improper position may cause higher in losses and fluctuations in voltage. In the meantime, the uncertainty in voltage may produce partial power failure in the system. For that reason, it is essential to deliberate the stability boundaries in DGs position and sizing in the Radial Distribution System (RDS). In this research paper, hybrid Binary Particle Swarm Optimization (BPSO) with Flower Pollination Algorithm (FPA) is proposed for the ideal reconfiguration process and placing the DG in the 69-bus RDS. BPSO is applied to identify the best DG reconfiguration and FPA is proposed to determine the optimal DG size. This technique narrowly changes the DG location in every load bus of the network that delivers the minimum value of the objective function, which is considered as the finest candidate for DG connection. The simulation outcomes indicate the proposed method is more effective in reducing the power loss from 224.9804 to 27.2183 KW with the reduction of 88.8972% when compared to existing algorithm


Sign in / Sign up

Export Citation Format

Share Document