scholarly journals Development of Compartmental Mathematical Model of Disease Transmission of Basal Stem Rot in Oil Palm Plantation

The mathematical modelling is one of the major research areas for mathematician and biologist in understanding the dynamics of transmissible infections. There might also be a mathematical model used to research the dynamics of plant disease and estimate the number of cases of outbreaks. In this research, we developed the compartmental mathematical model of the dynamical spread of transmission of plant disease with reference to basal stem rot (BSR) disease in oil palm plantation. The dynamics of the BSR disease were studied by a prone-contagious-sustained (PCS) compartmental mathematical model involving ordinary differential equations for three classes of hosts; prone, contagious and sustained. The equilibrium points and epidemic threshold conditions were analytically determined and numerical simulations were analyzed to support analytical results. From the numerical results, the solutions converge to each equilibrium state and PCS model simulation indicated that BSR disease has not become endemic. In particular, the threshold parameters that summarize the dynamics of the system will help to choose strategies for crop protection.

2020 ◽  
Vol 16 (2) ◽  
pp. 69-80
Author(s):  
Heri Santoso

Surveillance and Mapping of Basal Stem Rot Disease in Oil Palm Plantation Using Unmanned Aerial Vehicle (UAV) and Multispectral Camera Basal stem rot (BSR) disease caused by Ganoderma boninensis is still a major disease in oil palm plantations both in Indonesia and Malaysia. In some countries, remote sensing approach has been used for monitoring BSR in oil palm plantation. However, the utilization of satellite imagery in remote sensing especially in vegetation study on the tropical region was often limited by cloud cover. A drone or unmanned aerial vehicle (UAV) utilization is the best way to deal with cloud cover in the tropic region. Machine learning of random forest (RF) and satellite imagery used in the BSR study produced good accuracy. This research was aimed to identify and monitor the BSR infection on individual oil palm trees using an UAV and multispectral camera and RF classification. The results showed that the data acquired from UAV was affected by cloud shadows. The RF classification of healthy and infected oil palm trees by BSR disease and the spreading map of BSR infection was affected by cloud shadows. The highest accuracy of healthy and infected oil palm by BSR was 79.49%. Reflectance calibrator, digital to reflectance conversion, and model implications to build spreading map of BSR infection need to be conducted both on the clear area and the cloud shadow-covered area. Moreover, the UAV-based data should be considering the cloud view on the coverage area.


2014 ◽  
Vol 11 (10) ◽  
pp. 1841-1859 ◽  
Author(s):  
Fabien Fonguimgo Tengoua ◽  
Mohamed M. Hanafi ◽  
A. S. Idris ◽  
Kadir Jugah ◽  
Jamaludin Nurul Mayziatul Azwa ◽  
...  

Author(s):  
Subhas Khajanchi

AbstractWe investigate a mathematical model using a system of coupled ordinary differential equations, which describes the interplay of malignant glioma cells, macrophages, glioma specific CD8+T cells and the immunotherapeutic drug Adoptive Cellular Immunotherapy (ACI). To better understand under what circumstances the glioma cells can be eliminated, we employ the theory of optimal control. We investigate the dynamics of the system by observing biologically feasible equilibrium points and their stability analysis before administration of the external therapy ACI. We solve an optimal control problem with an objective functional which minimizes the glioma cell burden as well as the side effects of the treatment. We characterize our optimal control in terms of the solutions to the optimality system, in which the state system coupled with the adjoint system. Our model simulation demonstrates that the strength of treatment $u_{1}(t)$ plays an important role to eliminate the glioma cells. Finally, we derive an optimal treatment strategy and then solve it numerically.


Sign in / Sign up

Export Citation Format

Share Document