scholarly journals An Improved Stream Processing Access

Migration of Legacy applications into modern Cloud, IOT architecture are challenging tasks and many researchers are showing interest to build modern Real time cloud and IOT based applications like smart cities, Video mining, Health care, Industrial event monitoring and many more for modern human life. Such applications should require efficient online data streaming techniques to process large amount of unstructured online data streams instead of offline. Modern customer centric applications with different verticals are looking for distributed and horizontal data streaming approaches. Many real time streaming approaches are emerging to utilize or process large real-time data by replacing legacy centralized scenarios which are causing more memory utilization, delay and fault tolerance. In this paper we present common models and architectures for real time utilization of cloud and IoT based application stream processing. Utilization of the real-time data of IoT/Cloud applications are possible with collective streaming techniques of network, data processing. In this paper we are focusing on improving stream processing techniques, limitations and future research directions for real-time stream processing

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Author(s):  
Gayathri Nadarajan ◽  
Cheng-Lin Yang ◽  
Yun-Heh Chen-Burger ◽  
Yu-Jung Cheng ◽  
Sun-In Lin ◽  
...  

Author(s):  
Bernd Resch ◽  
Andreas Wichmann ◽  
Nicolas Göll

Even though advantages of 3D visualisation of multi-temporal geo-data versus 2D approaches have been widely proven, the particular pertaining challenge of real-time visualisation of geo-data in mobile Digital Earth applications has not been thoroughly tackled so far. In the emerging field of Augmented Reality (AR), research needs comprise finding the optimal information density, the interplay between orientation data in the background and other information layers, using the appropriate graphical variables for display, or selecting real-time base data with adequate quality and suitable spatial accuracy. In this paper we present a concept for integrating real-time data into 4D (three spatial dimensions plus time) AR environments, i.e., data with “high” spatial and temporal variations. We focus on three research challenges: 1.) high-performance integration of real-time data into AR; 2.) usability design in terms of displaying spatio-temporal developments and the interaction with the application; and 3.) design considerations regarding reality vs. virtuality, visualisation complexity and information density. We validated our approach in a prototypical application and extracted several limitations and future research areas including natural feature recognition, the cross-connection of (oftentimes monolithic) AR interface developments and well-established cartographic principles, or fostering the understanding of the temporal context in dynamic 4D Augmented Reality environments.


2014 ◽  
Vol 519-520 ◽  
pp. 70-73 ◽  
Author(s):  
Jing Bai ◽  
Tie Cheng Pu

Aiming at storing and transmitting the real time data of energy management system in the industrial production, an online data compression technique is proposed. Firstly, the auto regression model of a group of sequence is established. Secondly, the next sampled data can be predicted by the model. If the estimated error is in the allowable range, we save the parameters of model and the beginning data. Otherwise, we save the data and repeat the method from the next sampled data. At Last, the method is applied in electricity energy data compression of a beer production. The application result verifies the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document