scholarly journals The Importance of Implementing Cyber Physical Systems to Acquire Real-Time Data and Indicators

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.

Author(s):  
Bengang Bao ◽  
Xiangping Zhu ◽  
Yonghong Tan

<p class="keywords"><span lang="EN-US">Due to having a direct affect for the growth of crops, the monitor and modification for the indicators of Greenhouse environment play significant roles in improving the yield of crops. The system, which adopts FPGA technology to control and modify the air condition and lighting system by collecting and analyzing the data of the temperature and humidity, has achieved good effects in practice. In our study, the key technology of real-time data acquisition system based on FPGA is proposed. In particular, based on FPGA, the designed ADC0809 and asynchronous FIFO can save the data in real time, which can be analyzed and disposed timely, so that the environment can be corrected in time.</span></p>


2021 ◽  
Author(s):  
Chenchen Fu ◽  
Xiaoxing Qiu ◽  
Zelin Yun ◽  
Song Han ◽  
Weiwei Wu ◽  
...  

2020 ◽  
Vol 10 (17) ◽  
pp. 5950
Author(s):  
Seungmin Oh ◽  
Yoonsoo Choi ◽  
Sangdae Kim ◽  
Cheonyong Kim ◽  
Kwansoo Jung ◽  
...  

Mobile Cyber-Physical Systems (MCPS) have extended the application domains by exploiting the advantages of Cyber-Physical Systems (CPS) through the mobile devices. The cooperation of various mobile equipment and workers based on the MCPS further improved efficiency and productivity in the industry. To support this cooperation of groups of workers (hereafter referred to as the Mobile Sink Groups), data should be delivered to appropriate groups of workers in a timely manner. Traditionally, the data dissemination for MSG relies on flooding-based geocasting into the movable area of the group due to frequent movements of each group member. However, the flooding-based data dissemination could not be directly applied to real-time data delivery that demands the required time deadline and the end-to-end delivery distance, because the flooding could not define the end-to-end distance and progress to each member in a group. This paper proposes a real-time data delivery mechanism for supporting MSG in time-critical applications. In our mechanism, a ring-based modeling and data transfer scheme on a virtual grid in the ring for group mobility provides the end-to-end distance and the progress to forward real-time data to each member. Simulation results show our mechanism is superior to the existing ones in terms of real-time communication for MSG.


Sign in / Sign up

Export Citation Format

Share Document