scholarly journals Using Linear Discriminant Analysis for Dimensionality Reduction for Predicting Anomalies of BGP data

Border Gateway Protocol (BGP) is a vital protocol on the internet for transfer of data packets among Autonomous System (AS). Security is a major concern for the transmission of BGP packets which are often attacked by worms or are hijacked by an attacker which results in requests entering black holes or loss of connection to the particular sites. The BGP anomalies can be reduced by analyzing the BGP datasets. Since, ASes communicate through messages, therefore, the anomalies can be reduced by identifying the corrupted BGP message in the dataset. In this paper, BGP anomalies have been classified by applying Machine learning (ML) algorithms. The dataset contains information about the sending and receiving time between ASes. The classifiers were used to predict the anomalies. Since the dataset had high dimensions, the dimensions were reduced using Linear Discriminant Analysis (LDA) and then Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Linear Regression, Logistic Regression and Multi-Layer Perceptron (MLP) have been used to classify the anomalies.

Author(s):  
Ahmed.T. Sahlol ◽  
Aboul Ella Hassanien

There are still many obstacles for achieving high recognition accuracy for Arabic handwritten optical character recognition system, each character has a different shape, as well as the similarities between characters. In this chapter, several feature selection-based bio-inspired optimization algorithms including Bat Algorithm, Grey Wolf Optimization, Whale optimization Algorithm, Particle Swarm Optimization and Genetic Algorithm have been presented and an application of Arabic handwritten characters recognition has been chosen to see their ability and accuracy to recognize Arabic characters. The experiments have been performed using a benchmark dataset, CENPARMI by k-Nearest neighbors, Linear Discriminant Analysis, and random forests. The achieved results show superior results for the selected features when comparing the classification accuracy for the selected features by the optimization algorithms with the whole feature set in terms of the classification accuracy and the processing time. The experiments have been performed using a benchmark dataset, CENPARMI by k-Nearest neighbors, Linear Discriminant Analysis, and random forests. The achieved results show superior results for the selected features when comparing the classification accuracy for the selected features by the optimization algorithms with the whole feature set in terms of the classification accuracy and the processing time.


2012 ◽  
Vol 8 (S295) ◽  
pp. 180-180
Author(s):  
He Ma ◽  
Yanxia Zhang ◽  
Yongheng Zhao ◽  
Bo Zhang

AbstractIn this work, two different algorithms: Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) are combined for the classification of unresolved sources from SDSS DR8 and UKIDSS DR8. The experimental result shows that this joint approach is effective for our case.


Author(s):  
Zuherman Rustam ◽  
Yasirly Amalia ◽  
Sri Hartini ◽  
Glori Stephani Saragih

<span id="docs-internal-guid-4db59d91-7fff-c659-478a-6dd7456f380f"><span>Breast cancer is an abnormal cell growth in the breast that keeps changed uncontrolled and it forms a tumor. The tumor can be benign or malignant. Benign could not be dangerous to health and cancerous, but malignant could be has a probability dangerous to health and be cancerous. A specialist doctor will diagnose the patient and give treatment based on the diagnosis which is benign or malignant. Machine learning offer times efficiency to determine a cancer cell. The machine will learn the pattern based on the information from the dataset. Support vector machines and linear discriminant analysis are common methods that can be used in the classification of cancer. In this study, both of linear discriminant analysis and support vector machines are compared by looking from accuracy, sensitivity, specificity, and F1-score. We will know which methods are better in classifying breast cancer dataset. The result shows that the support vector machine has better performance than the linear discriminant analysis. It can be seen from the accuracy is 98.77%.</span></span>


Sign in / Sign up

Export Citation Format

Share Document