scholarly journals Bayesian Compressive Sampling Based Wideband Spectrum Sensing in Cognitive Radio Network using Wavelet Transform

2019 ◽  
Vol 8 (4) ◽  
pp. 1412-1419

This paper deals with the implementation of sub Nyquist sampling for the efficient wideband spectrum sensing in cognitive radio network. Cognitive radio is a very promising technology in the field of wireless communication which has drastically changed the spectral dynamics through the opportunistic utilization of frequency band by the secondary users when it is not utilized by the primary users. The complexity of spectral detection strategy is reduced using the compressive sensing method. Bayesian technique is utilized in the compressive sampling to deal with uncertainty of the process and increase the speed of detection. This technique recovers the wideband signals even with few measurements via Laplace prior and Toeplitz matrix. Sparse signal recovery algorithm is used for the extraction of primary user frequency location. The condition of the detection of primary user even in the low regulated transmission from unlicensed user is been resolved in this paper through Wavelet transform. This approach enables the evaluation of all possible hypotheses simultaneously in the global optimization framework. Simulation analysis is performed to verify the effectiveness of the proposed technique over the cognitive radio network.

2021 ◽  
Author(s):  
BALACHANDER T ◽  
Mukesh Krishnan M B

Abstract In the recent past, efficient cooperative spectrum sensing and usage are playing a vital role in wireless communication because of the significant progress of mobile devices. There is a recent surge and interest on Non-Orthogonal Multiple Access (NOMA) focused on communication powered by wireless mode. In modern research, more attention has been focused on efficient and accurate Non-Orthogonal Multiple Access (NOMA). NOMA wireless communication is highly adapted with Cognitive Radio Network (CRN) for improving performance. In the existing cognitive radio network, the secondary users could be able to access the idle available spectrum while primary users are engaged. In the traditional CRN, the primary user’s frequency bands are sensed as free, the secondary users could be utilized those bands of frequency resources. In this research, the novel methodology is proposed for cooperative spectrum sensing in CRN for 5G wireless communication using NOMA. The higher cooperative spectrum efficiency can be detected in the presence of channel noise. Cooperative spectrum sensing is used to improve the efficient utilization of spectrum. The spectrum bands with license authority primary user are shared by Secondary Users (SU) by simultaneously transmitting information with Primary Users (PU). The cooperative spectrum sensing provides well under the circumstances that the different channel interference to the primary user can be guaranteed to be negligible than an assured thresholding value. The Noisy Channel State Information (CSI) like AWGN and Rayleigh fading channels are considered as wireless transmission mediums for transmitting a signal using Multiple-Input-Multiple-Output (MIMO) NOMA to increase the number of users. The proposed NOMA is fascinated with significant benefits in CRN is an essential wireless communication method for upcoming 5G technology. From experimental results it has been proved that the novel methodology performance is efficient and accurate than existing methodologies by showing graphical representations and tabulated parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongwei Zhang ◽  
Xinyu Da ◽  
Hang Hu ◽  
Lei Ni ◽  
Yu Pan

Unmanned aerial vehicle- (UAV-) assisted communication has great potential to provide on-demand wireless services and improve the outdoor link throughput. In this paper, a UAV-based cognitive radio network (CRN) is investigated in which the UAV works as a secondary user (SU). Considering the overlay spectrum sensing mode, the UAV can operate on the licensed spectrum bands of primary user (PU) only when PU is idle. In each working frame structure, both sensing time slot and transmission time slot are analysed in radians. Specifically, our objective is to maximize the spectrum efficiency (SE) of the UAV by jointly optimizing the sensing radian and the number of radians. For the single-radian and multiradian schemes, the dichotomy and alternative iterative optimization (AIO) algorithm are proposed to solve the SE optimization problem. Simulation results show that the proposed multiradian cooperative spectrum sensing (CSS) scheme can achieve better performance on ensuring the quality-of-service (QoS) of the PU, and it can significantly enhance the SE of the UAV especially in the severe channel environments.


Sign in / Sign up

Export Citation Format

Share Document