scholarly journals Design and Analysis of Punch and Die of a Micro Blanking Tool

Stamping dies one of the essential industries in engineering. The sheet metal blanking procedure is a shearing operations. In the blanking procedure the sheet metal is detached from the bulky portion of stock through the application of shearing force on the sheet. Nowadays, the increase of gadgets and smart phone is because of the 4th industrial revolution. This situation leads the demand for micro parts that will include in electronic devices. The main problem occurred in sheet metal stamping is damage to the punch after running thousands of stamping process. This paper focuses on designing a micro blanking dieset that meet the industrial demand. The study is conducted using solidworks to design the micro blanking dieset and perform analysis using FEM. The result of FEA will be calculated using e-fatigue to get the lifecycle for the punch.

Author(s):  
Marcel Moghadam ◽  
Chris Valentin Nielsen ◽  
Niels Bay

Sheet metal stamping of complex geometries normally involves the use of drawbeads to control the metal flow in the forming die. Drawbeads are, however, often the most tribologically severe part of the stamping dies. Selection of a suitable tribosystem for this type of forming operation depends on parameters such as local contact pressures, sliding speed, tool/workpiece interface temperature, tool and workpiece materials, and surface topographies. Furthermore, it depends on the required tool life and acceptable maintenance costs. This study demonstrates a methodology for offline evaluation of tribosystem applicability for a specific production platform for stamping of a three-dimensional component using a forming die with drawbeads. Based on an industrial case study, this work combines experimental and numerical analyses of the risk of galling in the different regions of an industrial forming die.


Author(s):  
Xiaobing Dang ◽  
Ruxu Du ◽  
Kai He ◽  
Qiyang Zuo

As a light-weight material with high stiffness and strength, cellular metal has attracted a lot of attentions in the past two decades. In this paper, the structure and mechanical properties of aluminum cellular metal with periodic cubic cells are studied. The aluminum cellular metal is fabricated by sheet metal stamping and simple adhesion. Two sizes of specimens with cell sizes of 3mm and 5mm are fabricated. Their relative density and mechanical properties are tested by means of experiments. The results show that the cubic-cell cellular metal has high and predictable strength and hence, can be used for many practical applications.


Author(s):  
Wu-rong Wang ◽  
Bo Hou ◽  
Zhong-qin Lin ◽  
Z. Cedric Xia

High strength steels (HSSs) are one of the light-weight sheet metals well suited for reducing vehicle weight due to their higher strength-to-weight ratio. However, HSS tend to have bigger variations in their mechanical properties due to more complex rolling techniques involved in the steel-making process. Such uncertainties, when combined with variations in the process parameters such as friction and blank holder force, pose a significant challenge in maintaining the robustness of HSS sheet metal stamping. The paper presents a systematic and robust approach, combining the power of the finite element method and stochastic statistics to decrease the sensitivity of HSS stamping in the presence of above-mentioned uncertainties. First, the statistical distribution of sheet metal properties of selected HSS is characterized from a material sampling database. Then a separate interval adaptive response surface methodology (RSM) is applied in modeling sheet metal stamping. The new method significantly improves the model accuracy when compared with the conventional RSM within a single interval. Finally, the Monte Carlo method is employed to simulate the stochastic response of material/process variations to stamping quality and to provide optimal process parameter designs to reduce the sensitivity of these effects. The experiment with the obtained optimal process design demonstrates the improvements of stamping robustness using small-batch experiments.


CIRP Annals ◽  
2003 ◽  
Vol 52 (1) ◽  
pp. 249-252 ◽  
Author(s):  
G.N. Levy ◽  
R. Schindel ◽  
P. Schleiss ◽  
F. Micari ◽  
L. Fratini

Wear ◽  
2010 ◽  
Vol 268 (11-12) ◽  
pp. 1275-1284 ◽  
Author(s):  
Michael P. Pereira ◽  
Wenyi Yan ◽  
Bernard F. Rolfe

2006 ◽  
Vol 177 (1-3) ◽  
pp. 138-141 ◽  
Author(s):  
Chen-Hua She ◽  
Chun-Cheng Chang ◽  
Yung-Chou Kao ◽  
Hsin-Yu Cheng

Sign in / Sign up

Export Citation Format

Share Document