production platform
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 97)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 37 (4) ◽  
pp. 161-176
Author(s):  
Miftahulkhairah Anwar ◽  
◽  
Fachrur Razi Amir ◽  
Herlina Herlina ◽  
Novi Anoegrajekti ◽  
...  

The presence of technology changes the way humans communicate in cyberspace compared to the real world. “Hootsuite We are social” research in January 2019 showed that there are approximately 150 million social media users in Indonesia or 56% of the total population. There has been an increase of 20 million social media users in Indonesia compared to last year. The extensive use of social media, including Twitter, is changing the news production platform. News is not only produced by mass media, but potentially by everyone who can produce reports, shape public opinion, and create a virtual society. This condition has a destructive power because it can quickly spread and provoke powerful emotions and heated discourse. This paper discusses the characteristics of Indonesian language impoliteness on Twitter using qualitative research methods. The data were collected from Twitter statuses of Indonesian users in 2018. The analysis showed that impoliteness in speech and language occurs because of the ideology and power of each speaker. The impolite speech in this research related to the impoliteness nuanced with contempt to ethnicity, religion, race, and to a social group. The impoliteness nuanced with insult to ethnicity was 20% of our observed samples, while impoliteness nuanced with religious contempt was 25.1%; impoliteness related to race was 18.3%; and impoliteness toward social groups was 36.6%. The impoliteness is also often caused by the stimulation of the occurring social and political causes at that time. Keywords: Impoliteness, contempt of ethnicity, religion, race, social groups.


Author(s):  
Shunxing Chai ◽  
Zhihua Zhu ◽  
Ernuo Tian ◽  
Meili Xiao ◽  
Yan Wang ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1464
Author(s):  
Lex G. Medina-Magües ◽  
Janina Gergen ◽  
Edith Jasny ◽  
Benjamin Petsch ◽  
Jaime Lopera-Madrid ◽  
...  

Zika virus (ZIKV), a mosquito-borne flavivirus, has recently triggered global concern due to severe health complications. In 2015, a large ZIKV outbreak occurred in the Americas and established a link between ZIKV and microcephaly in newborn babies, spontaneous abortion, persistent viremia, and Guillain–Barré syndrome. While antivirals are being developed and prevention strategies focus on vector control, a safe and effective Zika vaccine remains unavailable. Messenger RNA (mRNA) vaccine technology has arisen as a flexible, simplified, and fast vaccine production platform. Here, we report on an mRNA vaccine candidate that encodes the pre-membrane and envelope (prM–E) glycoproteins of ZIKV strain Brazil SPH2015 and is encapsulated in lipid nanoparticles (LNPs). Our ZIKV prM–E mRNA-LNP vaccine candidate induced antibody responses that protected in AG129 mice deficient in interferon (IFN) alpha/beta/gamma (IFN-α/β/γ) receptors. Notably, a single administration of ZIKV prM–E mRNA-LNP protected against a lethal dose of ZIKV, while a two-dose strategy induced strong protective immunity. E-specific double-positive IFN-γ and TNF-α T-cells were induced in BALB/c mice after immunizations with a two-dose strategy. With the success of mRNA vaccine technology in facing the coronavirus (COVID-19) pandemic, our data support the development of prM–E RNActive® as a promising mRNA vaccine against Zika to counter future epidemics.


2021 ◽  
Author(s):  
Ayesha Ahmed Abdulla Salem Alsaeedi ◽  
Manar Maher Mohamed Elabrashy ◽  
Mohamed Ali Alzeyoudi ◽  
Mohamed Mubarak Albadi ◽  
Sandeep Soni ◽  
...  

Abstract This paper discusses business intelligence algorithms and data analytics capabilities of an integrated digital production platform implemented in a giant gas condensate field. The advanced workflow focuses on helping the user navigate through the bulk of data to identify patterns and make predictions utilizing exception-based intelligence alarming. This helps derive insightful findings and provides recommendations for users to make efficient business decisions for achieving field potential optimization objectives. An Integrated digital production platform within a giant gas condensate field is implemented with numerous production optimization workflows encompassing daily well and facility performance monitoring and surveillance. The data integration within the systems is enhanced by integration with powerful Business Intelligence (BI) tools, enabling users to create customized dashboards, KPI screens, and exception-based alarm screens. An additional integration to the production platform is carried out with data from real-time sources like PI Asset Framework and corporate databases, improving the integrated production system's daily well and facility surveillance capabilities. The advanced integration of BI tools provided users with various opportunities to identify bottlenecks, production improvement chances, and troubleshooting areas by capitalizing insights from various dashboards and business KPI screens. Further, integrating these dashboards with several corporate data sources and a real-time asset data framework enabled users to harness maximized information embedded in the bulk of data. This also enabled end-users to harness maximized system potential, with all information available under a single collaborative platform. The integration powered by various inbuilt complex algorithms extended scripting capabilities, and enhanced visualization assisted the asset in realizing business KPIs requirements. Business intelligence algorithms in user interface established a drill-down approach to utilize information associated with multiple variables on top of one another. This allowed for the quick identification of trends and patterns in data. The customization approach helped the user to draw maximum information out of data as per their engineering requirements and current practices. This advanced integration facilitated users to minimize their efforts in traditional data analysis such as gathering, mapping, filtering, and plotting. With the help of these powerful features embedded in an integrated platform, the user was able to drive more focus on optimization and minimize time and effort on system configuration. This unique integration was one of its kind. An online integrated digital production platform comprising of wells, networks, and various workflows was integrated with business intelligence tools, thereby providing end-users tremendous opportunities related to system optimization.


mSystems ◽  
2021 ◽  
Author(s):  
Sang-Hyeok Cho ◽  
Yujin Jeong ◽  
Seong-Joo Hong ◽  
Hookeun Lee ◽  
Hyung-Kyoon Choi ◽  
...  

Cyanobacteria are a compelling biochemical production platform for their ability to propagate using light and atmospheric CO 2 via photosynthesis. However, the engineering of strains is hampered by limited understanding of photosynthesis under diverse environmental conditions such as high-light and low-temperature stresses.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wen Zhu ◽  
Lifu Hu ◽  
Yang Wang ◽  
Liangyin Lv ◽  
Hui Wang ◽  
...  

Abstract Background Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. Results In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. Conclusions The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents. Graphical Abstract


Author(s):  
Liguo Zhong ◽  
Cheng Wang ◽  
Yigang Liu ◽  
Wei Zhang ◽  
Xiaodong Han ◽  
...  

AbstractA modular multiple thermal fluid generator is introduced to enhance heavy oil production, which consists of water treatment system, fuel injection system, air compressor, central burning and heat exchanging system, and measuring and controlling system. All the components are mounted in three separated light shelters, which are easy to be lifted and installed, especially on the offshore production platform. It could be operated under 350 ℃ and 20 MPa, and the temperature and GWR (ratio of the volume of gas to the equivalent water volume of steam under standard conditions) could be adjusted by the water injection rate under the given heating capability of the central burning chamber. The temperature of the generated fluid is usually 200–300 ℃ with GWR of 200–300 m3/m3. Compared to conventional steam generator, such compact multiple thermal fluid generator is easy to be installed on the offshore oil production platform, and the generated multiple thermal fluid is potential to enhance heavy oil production in mechanisms of reducing heavy oil viscosity by both heating and injected gas, enlarging the heating reservoir chamber, and pressure by injected gas. In the past 10 years, the multiple thermal fluid generator has been applied to more than 40 wells in Bohai Offshore Oilfield and Xinjiang Oilfield in cyclic multiple thermal fluid stimulation (CMTFS in short) process. As a result, the multiple thermal fluid generators were operated soundly, and the heavy oil production of these wells was enhanced remarkably. (The oil production rate was 2–3 times more than cold production.)


mBio ◽  
2021 ◽  
Author(s):  
Linda van Oosten ◽  
Jort J. Altenburg ◽  
Cyrielle Fougeroux ◽  
Corinne Geertsema ◽  
Fred van den End ◽  
...  

Vaccines pave the way out of the SARS-CoV-2 pandemic. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document