scholarly journals Condition Monitoring Technologies for Steel Wire Ropes – A Review

Author(s):  
Rune Schlanbusch ◽  
Espen Oland ◽  
Eric R. Bechhoefer

In this research, we review condition-monitoring technologies for offshore steel wire ropes (SWR). Such ropes are used within several offshore applications including cranes for load handling such as subsea construction at depths up to 3-4000 meters, drilling lines, marine riser tensioner lines and anchor lines. For mooring, there is a clear tendency for using fiber ropes. Especially for heavy-lift cranes and subsea deployment, winches with strong ropes of up to 180 mm in diameter may be required, which has a considerable cost per rope, especially for large water depths. Today’s practice is to discard the rope after a predetermined number of uses due to fatigue from bending over sheaves with a large safety factor, especially for systems regulated by active heave compensation (AHC). Other sources of degradation are abrasion, fretting, corrosion and extreme forces, and are typically accelerated due to undersized or poorly maintained sheaves, groove type, lack of lubrication and excessive load.Non-destructive testing techniques for SWR have been developed over a period of 100 years. Most notably are the magnetic leakage techniques (electromagnetic methods), which are widely used within several industries such as mining and construction.The content reviewed in this research is primarily the developments the last five years within the topics of electromagnetic method, acoustic emissions (AE), ultrasound, X- and γ-rays, fiber optics, optical and thermal vision and current signature analysis. Each technique is thoroughly presented and discussed for the application of subsea construction. Assessments include ability to detect localized flaws (i.e. broken wire) both internally and externally, estimated loss of metallic cross sectional area, robustness with respect to the rough offshore environment, ability to evaluate both rope and end fittings, and ability to work during operation.

2021 ◽  
Vol 79 (11) ◽  
pp. 1050-1060
Author(s):  
Vasily Sukhorukov ◽  
Dmitry Slesarev ◽  
Ivan Shpakov ◽  
Vasily Yu. Volokhovsky ◽  
Alexander Vorontsov ◽  
...  

The hazards and deterioration of operating wire ropes on overhead cranes, which articulate the ladle in the basic oxygen steelmaking process and are subjected to intensive periodic loads and exposure to high temperatures, are discussed. An automated condition monitoring system (ACMS) based on a magnetic flux leakage testing (MFL) flaw detector permanently installed on the rope under test is used. An algorithm of the rope’s residual tensile strength assessment is provided. A specially developed software that submits a decision on the rope’s condition to the crane operator is described. The practice of combining magnetic rope testing (MRT) and tensile strength analysis for the quantitative assessment of rope condition is reviewed. Practical issues are also discussed, such as how to establish the condition monitoring process, set loss thresholds for rope metallic cross-sectional area, and safely prolong the service life of rope.


Author(s):  
Félix Leaman ◽  
Cristián Molina Vicuña ◽  
Elisabeth Clausen

AbstractDespite the progress made in the last decades in the field of machine condition monitoring, there are still cases where the current state of the art is not enough and new technologies and advanced analysis methods are required to prevent unexpected failures. One example is planetary gearboxes (PGs), which are one of the main components of mechanical transmission systems in heavy-duty machines such as off-highway trucks, electric rope shovels, helicopters and wind turbines. Although those machines are usually equipped with vibration and temperature sensors to detect faults in mechanical components, these technologies might not be able to perform well under certain circumstances. Therefore, the applied investigation on new monitoring technologies in the field of machine condition monitoring is a necessary step. Among those, in this review the acoustic emission technology will be addressed as a tool for fault diagnosis of gear faults in PG.


Sign in / Sign up

Export Citation Format

Share Document