SEMI INVASIVE CARDIAC OUTPUT MONITORING IN A CARDIAC PATIENT UNDERGOING TOTAL THYROIDECTOMY USING SMARTPHONE APP CAPSTESIA.

2021 ◽  
pp. 4-5
Author(s):  
Santosh Kumar Rai ◽  
Vishal Vashist ◽  
Deepak Bhardwaj ◽  
Bhanu Gupta

Introduction: Advanced hemodynamic monitoring is need of today especially in patients with limited cardiac reserve. With the advent of smartphones & specially designed applications, hemodynamic monitoring becomes quite easy. Materials & Methods: Patient was pre – medicated with Inj. Fentanyl & inj. Glycopyrrolate, induced with Inj. Etomidate & Inj. Vecuronium and maintained with mixture ofIsourane, Nitrous Oxide & Oxygen. An arterial line was secured in Left Radial Artery. We used the CAPSTESIA app to take picture of the arterial waveform using a smartphone. Demographic data of the patient was fed in the app. App used it's pre- fed algorithm to give the real time Cardiac Output, Pulse Pressure variations, Cardiac Index based upon the arterial waveform. Results: Using the application we were able to monitor the cardiac output of the patient in real time using semi- invasive means. It enabled us to regulate the uid management of the patient and avoid any adverse cardiac events (hypotension). With Pulse Pressure variation also available in real time, we were able to restrict use of vasopressors since the Left Ventricle Ejection Fraction of the patient was 35 % on ECHO. Surgery was conducted without any untoward event. Patient was successfully extubated and sent to PACU. Conclusions:Advanced hemodynamic monitoring is time consuming using manual methods. We found the smartphone app CAPSTESIA pretty useful for semi-invasive hemodynamic monitoring of the Cardiac Output, Pulse Pressure variation, Cardiac Index,etc in real time.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph R. Behem ◽  
Michael F. Graessler ◽  
Till Friedheim ◽  
Rahel Kluttig ◽  
Hans O. Pinnschmidt ◽  
...  

AbstractDynamic parameters of preload have been widely recommended to guide fluid therapy based on the principle of fluid responsiveness and with regard to cardiac output. An equally important aspect is however to also avoid volume-overload. This accounts particularly when capillary leakage is present and volume-overload will promote impairment of microcirculatory blood flow. The aim of this study was to evaluate, whether an impairment of intestinal microcirculation caused by volume-load potentially can be predicted using pulse pressure variation in an experimental model of ischemia/reperfusion injury. The study was designed as a prospective explorative large animal pilot study. The study was performed in 8 anesthetized domestic pigs (German landrace). Ischemia/reperfusion was induced during aortic surgery. 6 h after ischemia/reperfusion-injury measurements were performed during 4 consecutive volume-loading-steps, each consisting of 6 ml kg−1 bodyweight−1. Mean microcirculatory blood flow (mean Flux) of the ileum was measured using direct laser-speckle-contrast-imaging. Receiver operating characteristic analysis was performed to determine the ability of pulse pressure variation to predict a decrease in microcirculation. A reduction of ≥ 10% mean Flux was considered a relevant decrease. After ischemia–reperfusion, volume-loading-steps led to a significant increase of cardiac output as well as mean arterial pressure, while pulse pressure variation and mean Flux were significantly reduced (Pairwise comparison ischemia/reperfusion-injury vs. volume loading step no. 4): cardiac output (l min−1) 1.68 (1.02–2.35) versus 2.84 (2.15–3.53), p = 0.002, mean arterial pressure (mmHg) 29.89 (21.65–38.12) versus 52.34 (43.55–61.14), p < 0.001, pulse pressure variation (%) 24.84 (17.45–32.22) versus 9.59 (1.68–17.49), p = 0.004, mean Flux (p.u.) 414.95 (295.18–534.72) versus 327.21 (206.95–447.48), p = 0.006. Receiver operating characteristic analysis revealed an area under the curve of 0.88 (CI 95% 0.73–1.00; p value < 0.001) for pulse pressure variation for predicting a decrease of microcirculatory blood flow. The results of our study show that pulse pressure variation does have the potential to predict decreases of intestinal microcirculatory blood flow due to volume-load after ischemia/reperfusion-injury. This should encourage further translational research and might help to prevent microcirculatory impairment due to excessive fluid resuscitation and to guide fluid therapy in the future.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Temistocle Taccheri ◽  
Francesco Gavelli ◽  
Jean-Louis Teboul ◽  
Rui Shi ◽  
Xavier Monnet

Abstract Background In patients ventilated with tidal volume (Vt) < 8 mL/kg, pulse pressure variation (PPV) and, likely, the variation of distensibility of the inferior vena cava diameter (IVCDV) are unable to detect preload responsiveness. In this condition, passive leg raising (PLR) could be used, but it requires a measurement of cardiac output. The tidal volume (Vt) challenge (PPV changes induced by a 1-min increase in Vt from 6 to 8 mL/kg) is another alternative, but it requires an arterial line. We tested whether, in case of Vt = 6 mL/kg, the effects of PLR could be assessed through changes in PPV (ΔPPVPLR) or in IVCDV (ΔIVCDVPLR) rather than changes in cardiac output, and whether the effects of the Vt challenge could be assessed by changes in IVCDV (ΔIVCDVVt) rather than changes in PPV (ΔPPVVt). Methods In 30 critically ill patients without spontaneous breathing and cardiac arrhythmias, ventilated with Vt = 6 mL/kg, we measured cardiac index (CI) (PiCCO2), IVCDV and PPV before/during a PLR test and before/during a Vt challenge. A PLR-induced increase in CI ≥ 10% defined preload responsiveness. Results At baseline, IVCDV was not different between preload responders (n = 15) and non-responders. Compared to non-responders, PPV and IVCDV decreased more during PLR (by − 38 ± 16% and − 26 ± 28%, respectively) and increased more during the Vt challenge (by 64 ± 42% and 91 ± 72%, respectively) in responders. ∆PPVPLR, expressed either as absolute or as percent relative changes, detected preload responsiveness (area under the receiver operating curve, AUROC: 0.98 ± 0.02 for both). ∆IVCDVPLR detected preload responsiveness only when expressed in absolute changes (AUROC: 0.76 ± 0.10), not in relative changes. ∆PPVVt, expressed as absolute or percent relative changes, detected preload responsiveness (AUROC: 0.98 ± 0.02 and 0.94 ± 0.04, respectively). This was also the case for ∆IVCDVVt, but the diagnostic threshold (1 point or 4%) was below the least significant change of IVCDV (9[3–18]%). Conclusions During mechanical ventilation with Vt = 6 mL/kg, the effects of PLR can be assessed by changes in PPV. If IVCDV is used, it should be expressed in percent and not absolute changes. The effects of the Vt challenge can be assessed on PPV, but not on IVCDV, since the diagnostic threshold is too small compared to the reproducibility of this variable. Trial registration: Agence Nationale de Sécurité du Médicament et des Produits de santé: ID-RCB: 2016-A00893-48.


2020 ◽  
Author(s):  
Temistocle Taccheri ◽  
Francesco Gavelli ◽  
Jean-Louis Teboul ◽  
Rui Shi ◽  
Xavier Monnet

Abstract BackgroundIn patients ventilated with tidal volume (Vt) <8 mL/kg, pulse pressure variation (PPV) and, likely, the distensibility of the inferior vena cava diameter (IVCV) are unable to detect preload responsiveness. In this condition, passive leg raising (PLR) could be used but it requires a measurement of cardiac output. The tidal volume (Vt) challenge (PPV changes induced by a 1-min increase in Vt from 6 to 8 mL/kg) is another alternative, but it requires an arterial line. We tested whether, in case of Vt=6mL/kg, the effects of PLR could be assessed through changes in PPV or in IVCV rather than changes in cardiac output, and whether the effects of the Vt challenge could be assessed by changes in IVCV rather than changes in PPV.MethodsIn 30 critically ill patients without spontaneous breathing and cardiac arrhythmias, ventilated with Vt=6 mL/kg, we measured cardiac index (CI) (PiCCO2), IVCV and PPV before/during a PLR test and before/during a Vt challenge. A PLR-induced increase in CI ≥10% defined preload responsiveness.ResultsAt baseline, IVCV was not different between preload responders (n=15) and non-responders. Compared to non-responders, PPV and IVCV decreased more during PLR (by -38±16% and -26±28%, respectively) and increased more during the Vt challenge (by 64±42% and 91±72%, respectively) in responders. ∆PPVPLR, expressed either as absolute or percent relative changes, detected preload responsiveness (area under the receiver operating curve, AUROC: 0.98±0.02 for both). ∆IVCVPLR detected preload responsiveness only when expressed in absolute changes (AUROC: 0.76±0.10), not in relative changes. ∆PPVVt, expressed as absolute or percent relative changes, detected preload responsiveness (AUROC: 0.98±0.02 and 0.94±0.04, respectively). This was also the case for ∆IVCVVt but, the diagnostic threshold (1 point or 4%) was below the least significant change of IVCV (9[3-18]%).ConclusionsDuring mechanical ventilation with Vt=6 mL/kg, the effects of PLR can be assessed by changes in PPV. If IVCV is used, it should be expressed in percent and not in absolute changes. The effects of the Vt challenge can be assessed on PPV, but not on IVCV, since the diagnostic threshold is too small with regards to the reproducibility of this variable.Trial registrationIDRCB: 2016-A00893-48


2019 ◽  
Vol 128 (6) ◽  
pp. 1145-1151 ◽  
Author(s):  
Alexandre Joosten ◽  
Céline Boudart ◽  
Jean-Louis Vincent ◽  
Frederic Vanden Eynden ◽  
Luc Barvais ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hugues de Courson ◽  
Loic Ferrer ◽  
Grégoire Cane ◽  
Eric Verchère ◽  
Musa Sesay ◽  
...  

Abstract Background Many maneuvers assessing fluid responsiveness (minifluid challenge, lung recruitment maneuver, end-expiratory occlusion test, passive leg raising) are considered as positive when small variations in cardiac index, stroke volume index, stroke volume variation or pulse pressure variation occur. Pulse contour analysis allows continuous and real-time cardiac index, stroke volume, stroke volume variation and pulse pressure variation estimations. To use these maneuvers with pulse contour analysis, the knowledge of the minimal change that needs to be measured by a device to recognize a real change (least significant change) has to be studied. The aim of this study was to evaluate the least significant change of cardiac index, stroke volume index, stroke volume variation and pulse pressure variation obtained using pulse contour analysis (ProAQT®, Pulsion Medical System, Germany). Methods In this observational study, we included 50 mechanically ventilated patients undergoing neurosurgery in the operating room. Cardiac index, stroke volume index, pulse pressure variation and stroke volume variation obtained using ProAQT® (Pulsion Medical System, Germany) were recorded every 12 s during 15-min steady-state periods. Least significant changes were calculated every minute. Results Least significant changes statistically differed over time for cardiac index, stroke volume index, pulse pressure variation and stroke volume variation (p < 0.001). Least significant changes ranged from 1.3 to 0.7% for cardiac index, from 1.3 to 0.8% for stroke volume index, from 10 to 4.9% for pulse pressure variation and from 10.8 to 4.3% for stroke volume variation. Conclusion To conclude, the present study suggests that pulse contour analysis is able to detect rapid and small changes in cardiac index and stroke volume index, but the interpretation of rapid and small changes of pulse pressure variation and stroke volume variation must be done with caution.


Sign in / Sign up

Export Citation Format

Share Document