scholarly journals The Strength of Nesterov's Extrapolation2019

Author(s):  
Qing Tao

The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this paper, we theoretically study its strength in the convergence of individual iterates of general non-smooth convex optimization problems, which we name \textit{individual convergence}. We prove that Nesterov's extrapolation is capable of making the individual convergence of projected gradient methods optimal for general convex problems, which is now a challenging problem in the machine learning community. In light of this consideration, a simple modification of the gradient operation suffices to achieve optimal individual convergence for strongly convex problems, which can be regarded as making an interesting step towards the open question about SGD posed by Shamir \cite{shamir2012open}. Furthermore, the derived algorithms are extended to solve regularized non-smooth learning problems in stochastic settings. {\color{blue}They can serve as an alternative to the most basic SGD especially in coping with machine learning problems, where an individual output is needed to guarantee the regularization structure while keeping an optimal rate of convergence.} Typically, our method is applicable as an efficient tool for solving large-scale $l_1$-regularized hinge-loss learning problems. Several real experiments demonstrate that the derived algorithms not only achieve optimal individual convergence rates but also guarantee better sparsity than the averaged solution.

2020 ◽  
Author(s):  
Qing Tao

The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this paper, we theoretically study its strength in the convergence of individual iterates of general non-smooth convex optimization problems, which we name \textit{individual convergence}. We prove that Nesterov's extrapolation is capable of making the individual convergence of projected gradient methods optimal for general convex problems, which is now a challenging problem in the machine learning community. In light of this consideration, a simple modification of the gradient operation suffices to achieve optimal individual convergence for strongly convex problems, which can be regarded as making an interesting step towards the open question about SGD posed by Shamir \cite{shamir2012open}. Furthermore, the derived algorithms are extended to solve regularized non-smooth learning problems in stochastic settings. {\color{blue}They can serve as an alternative to the most basic SGD especially in coping with machine learning problems, where an individual output is needed to guarantee the regularization structure while keeping an optimal rate of convergence.} Typically, our method is applicable as an efficient tool for solving large-scale $l_1$-regularized hinge-loss learning problems. Several real experiments demonstrate that the derived algorithms not only achieve optimal individual convergence rates but also guarantee better sparsity than the averaged solution.


Author(s):  
Zhijian Luo ◽  
Yuntao Qian

Stochastic optimization on large-scale machine learning problems has been developed dramatically since stochastic gradient methods with variance reduction technique were introduced. Several stochastic second-order methods, which approximate curvature information by the Hessian in stochastic setting, have been proposed for improvements. In this paper, we introduce a Stochastic Sub-Sampled Newton method with Variance Reduction (S2NMVR), which incorporates the sub-sampled Newton method and stochastic variance-reduced gradient. For many machine learning problems, the linear time Hessian-vector production provides evidence to the computational efficiency of S2NMVR. We then develop two variations of S2NMVR that preserve the estimation of Hessian inverse and decrease the computational cost of Hessian-vector product for nonlinear problems.


Author(s):  
Mikhail Krechetov ◽  
Jakub Marecek ◽  
Yury Maximov ◽  
Martin Takac

Low-rank methods for semi-definite programming (SDP) have gained a lot of interest recently, especially in machine learning applications. Their analysis often involves determinant-based or Schatten-norm penalties, which are difficult to implement in practice due to high computational efforts. In this paper, we propose Entropy-Penalized Semi-Definite Programming (EP-SDP), which provides a unified framework for a broad class of penalty functions used in practice to promote a low-rank solution. We show that EP-SDP problems admit an efficient numerical algorithm, having (almost) linear time complexity of the gradient computation; this makes it useful for many machine learning and optimization problems. We illustrate the practical efficiency of our approach on several combinatorial optimization and machine learning problems.


Author(s):  
Ion Necoara ◽  
Martin Takáč

Abstract In this paper we consider large-scale smooth optimization problems with multiple linear coupled constraints. Due to the non-separability of the constraints, arbitrary random sketching would not be guaranteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent methods for solving general smooth linearly constrained problems, in particular, random sketch descent (RSD) and accelerated random sketch descent (A-RSD) methods. To our knowledge, this is the first convergence analysis of RSD algorithms for optimization problems with multiple non-separable linear constraints. For the general case, when the objective function is smooth and non-convex, we prove for the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the smooth convex case, we derive for both algorithms, non-accelerated and A-RSD, sublinear convergence rates in the expected values of the objective function. Additionally, if the objective function satisfies a strong convexity type condition, both algorithms converge linearly in expectation. In special cases, where complexity bounds are known for some particular sketching algorithms, such as coordinate descent methods for optimization problems with a single linear coupled constraint, our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate the performances of our new algorithms.


Author(s):  
Ehsan Kazemi ◽  
Liqiang Wang

Nonconvex and nonsmooth problems have recently attracted considerable attention in machine learning. However, developing efficient methods for the nonconvex and nonsmooth optimization problems with certain performance guarantee remains a challenge. Proximal coordinate descent (PCD) has been widely used for solving optimization problems, but the knowledge of PCD methods in the nonconvex setting is very limited. On the other hand, the asynchronous proximal coordinate descent (APCD) recently have received much attention in order to solve large-scale problems. However, the accelerated variants of APCD algorithms are rarely studied. In this paper, we extend APCD method to the accelerated algorithm (AAPCD) for nonsmooth and nonconvex problems that satisfies the sufficient descent property, by comparing between the function values at proximal update and a linear extrapolated point using a delay-aware momentum value. To the best of our knowledge, we are the first to provide stochastic and deterministic accelerated extension of APCD algorithms for general nonconvex and nonsmooth problems ensuring that for both bounded delays and unbounded delays every limit point is a critical point. By leveraging Kurdyka-Łojasiewicz property, we will show linear and sublinear convergence rates for the deterministic AAPCD with bounded delays. Numerical results demonstrate the practical efficiency of our algorithm in speed.


Author(s):  
Quoc Tran-Dinh ◽  
Ling Liang ◽  
Kim-Chuan Toh

This paper suggests two novel ideas to develop new proximal variable-metric methods for solving a class of composite convex optimization problems. The first idea is to utilize a new parameterization strategy of the optimality condition to design a class of homotopy proximal variable-metric algorithms that can achieve linear convergence and finite global iteration-complexity bounds. We identify at least three subclasses of convex problems in which our approach can apply to achieve linear convergence rates. The second idea is a new primal-dual-primal framework for implementing proximal Newton methods that has attractive computational features for a subclass of nonsmooth composite convex minimization problems. We specialize the proposed algorithm to solve a covariance estimation problem in order to demonstrate its computational advantages. Numerical experiments on the four concrete applications are given to illustrate the theoretical and computational advances of the new methods compared with other state-of-the-art algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Can Li

We are concerned with the nonnegative constraints optimization problems. It is well known that the conjugate gradient methods are efficient methods for solving large-scale unconstrained optimization problems due to their simplicity and low storage. Combining the modified Polak-Ribière-Polyak method proposed by Zhang, Zhou, and Li with the Zoutendijk feasible direction method, we proposed a conjugate gradient type method for solving the nonnegative constraints optimization problems. If the current iteration is a feasible point, the direction generated by the proposed method is always a feasible descent direction at the current iteration. Under appropriate conditions, we show that the proposed method is globally convergent. We also present some numerical results to show the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document