scholarly journals DCNN-IDS : Deep Convolutional Neural Network based Intrusion Detection System

Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.

2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Robson V. Mendonca ◽  
Arthur A. M. Teodoro ◽  
Renata L. Rosa ◽  
Muhammad Saadi ◽  
Dick Carrillo ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Qian Wang ◽  
Wenfang Zhao ◽  
Jiadong Ren

Intrusion Detection System (IDS) can reduce the losses caused by intrusion behaviors and protect users’ information security. The effectiveness of IDS depends on the performance of the algorithm used in identifying intrusions. And traditional machine learning algorithms are limited to deal with the intrusion data with the characteristics of high-dimensionality, nonlinearity and imbalance. Therefore, this paper proposes an Intrusion Detection algorithm based on Image Enhanced Convolutional Neural Network (ID-IE-CNN). Firstly, based on the image processing technology of deep learning, oversampling method is used to increase the amount of original data to achieve data balance. Secondly, the one-dimensional data is converted into two-dimensional image data, the convolutional layer and the pooling layer are used to extract the main features of the image to reduce the data dimensionality. Third, the Tanh function is introduced as an activation function to fit nonlinear data, a fully connected layer is used to integrate local information, and the generalization ability of the prediction model is improved by the Dropout method. Finally, the Softmax classifier is used to predict the behavior of intrusion detection. This paper uses the KDDCup99 data set and compares with other competitive algorithms. Both in the performance of binary classification and multi-classification, ID-IE-CNN is better than the compared algorithms, which verifies its superiority.


2021 ◽  
Author(s):  
Heba A. Hassan ◽  
Ezz E. Hemdan ◽  
Walid El-Shafai ◽  
Mona Shokair ◽  
Fathi E. Abd El-Samie

Sign in / Sign up

Export Citation Format

Share Document