strong mode
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 767
Author(s):  
Yaping Liu ◽  
Zhiqun Yang ◽  
Xutao Wang ◽  
Yongmin Jung ◽  
Lin Zhang

Few-mode erbium-doped fiber amplifiers (FM-EDFAs) are one of the most important optical subsystems for successful space division multiplexed transmission systems. In this paper, we propose a new FM-EDFA designed to achieve significantly reduced differential modal gain (DMG) via strong mode coupling. Using a new numerical model based on a fiber transfer matrix, the DMGs of FM-EDFAs are systematically investigated and two different types of six-mode fiber amplifiers are analyzed, as exemplar demonstrations. In a uniformly doped step-index fiber, the DMG can be reduced from 9.3 to 1.1 dB (i.e., 8.2 dB reduction) and further reduced to 0.5 dB in a dual-layer doping structure.


2021 ◽  
Author(s):  
Wei Zhang ◽  
Zhiwei Ma ◽  
Haowei Zhang ◽  
Wen Jin CHEN ◽  
Xin Wang

Abstract In the present paper, we systematically investigate the nonlinear evolution of the resistive kink mode in the low resistivity plasma in Tokamak geometry. We find that the aspect ratio of the initial equilibrium can significantly influence the critical resistivity for plasmoid formation. With the aspect ratio of 3/1, the critical resistivity can be one magnitude larger than that in cylindrical geometry due to the strong mode-mode coupling. We also find that the critical resistivity for plasmoid formation decreases with increasing plasma viscosity in the moderately low resistivity regime. Due to the geometry of Tokamaks, the critical resistivity for plasmoid formation increases with the increasing radial location of the resonant surface.


Author(s):  
Hien M Phan ◽  
Li He

Abstract There seems to be a lack of clear and systematic understanding of physical behaviour and mechanisms of mistuned bladerows, particularly in the context of the aerodynamic mistuning versus the structural (frequency) mistuning. A high-fidelity fully-coupled method is desirable to investigate the vibration characteristics of aeroelasticity problems with strong fluid-structure interaction effects, as well as blade mistuning effects. In the present work, the direct nonlinear time-domain fully-coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. The main objectives are two-folds, firstly to elucidate the basic vibration characteristics of a mistuned bladerow, and secondly to examine the aeroelastic effects of mistuning. Three conditions of interest are considered: a) the structural mistuning only, b) the aerodynamic mistuning only, and c) a combination of the two. The present results show that firstly a mistuned configuration tends to vibrate with the same frequency and a predominantly constant inter-blade phase-angle. Vibration amplitudes of the blades vary significantly with a strong mode localization effect for the structural mistuning. For the concurrent structural-aerodynamic mistuning, the localization is stronger than in the standalone structural mistuning case. Secondly, a monotonic increase of the aeroelastic stability with the structural mistuning magnitude is observed. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect with a small amount of mistuning but exhibits a destabilizing effect with a large mistuning. Furthermore... see paper for the full abstract


2021 ◽  
Author(s):  
David Moss

Abstract We demonstrate enhanced four-wave mixing (FWM) in doped silica waveguides integrated with graphene oxide (GO) layers. Owing to strong mode overlap between the integrated waveguides and GO films that have a high Kerr nonlinearity and low loss, the FWM efficiency of the hybrid integrated waveguides is significantly improved. We perform FWM measurements for different pump powers, wavelength detuning, GO coating lengths, and number of GO layers. Our experimental results show good agreement with theory, achieving up to ~9.5-dB enhancement in the FWM conversion efficiency for a 1.5-cm-long waveguide integrated with 2 layers of GO. We show theoretically that for different waveguide geometries an enhancement in FWM efficiency of ~ 20 dB can be obtained in the doped silica waveguides, and more than 30 dB in silicon nanowires and slot waveguides. This demonstrates the effectiveness of introducing GO films into integrated photonic devices in order to enhance the performance of nonlinear optical processes.


2021 ◽  
pp. 118242
Author(s):  
Ru Wang ◽  
Chunxiang Xu ◽  
Daotong You ◽  
Xiaoxuan Wang ◽  
Jinping Chen ◽  
...  

2021 ◽  
Author(s):  
Yang Qu ◽  
Jiayang Wu ◽  
Yuning Zhang ◽  
Linnan Jia ◽  
Yao Liang ◽  
...  

Abstract We theoretically investigate and optimize four-wave mixing (FWM) in silicon nitride (SiN) waveguides integrated with two-dimensional (2D) layered graphene oxide (GO) films. Based on extensive previous measurements of the material parameters of the GO films, we perform detailed analysis for the influence of device parameters including waveguide geometry, GO film thickness, length, and coating position on the FWM conversion efficiency (CE) and conversion bandwidth (CB). The influence of dispersion and photo-thermal changes in the GO films is also discussed. Owing to the strong mode overlap between the SiN waveguides and the highly nonlinear GO films, FWM in the hybrid waveguides can be significantly enhanced. We obtain good agreement with previous experimental results and show that by optimizing the device parameters to balance the trade-off between Kerr nonlinearity and loss, the FWM CE can be improved by as much as ~20.7 dB and the FWM CB can be increased by ~4.4 folds, relative to the uncoated waveguides. These results highlight the significantly enhanced FWM performance that can be achieved in SiN waveguides by integrating 2D layered GO films.


2021 ◽  
Author(s):  
David Moss

We theoretically investigate and optimize four-wave mixing (FWM) in silicon nitride (SiN) waveguides integrated with two-dimensional (2D) layered graphene oxide (GO) films. Based on extensive previous measurements of the material parameters of the GO films, we perform detailed analysis for the influence of device parameters including waveguide geometry, GO film thickness, length, and coating position on the FWM conversion efficiency (CE) and conversion bandwidth (CB). The influence of dispersion and photo-thermal changes in the GO films is also discussed. Owing to the strong mode overlap between the SiN waveguides and the highly nonlinear GO films, FWM in the hybrid waveguides can be significantly enhanced. We obtain good agreement with previous experimental results and show that by optimizing the device parameters to balance the trade-off between Kerr nonlinearity and loss, the FWM CE can be improved by as much as ~20.7 dB and the FWM CB can be increased by ~4.4 folds, relative to the uncoated waveguides. These results highlight the significantly enhanced FWM performance that can be achieved in SiN waveguides by integrating 2D layered GO films.


2021 ◽  
Vol 502 (1) ◽  
pp. 1253-1262
Author(s):  
Simon Johnston ◽  
C Sobey ◽  
S Dai ◽  
M Keith ◽  
M Kerr ◽  
...  

ABSTRACT The major programme for observing young, non-recycled pulsars with the Parkes telescope has transitioned from a narrow-band system to an ultra-wide-band system capable of observing between 704 and 4032 MHz. We report here on the initial 2 yr of observations with this receiver. Results include dispersion measure (DM) and Faraday rotation measure (RM) variability with time, determined with higher precision than hitherto, flux density measurements and the discovery of several nulling and mode changing pulsars. PSR J1703−4851 is shown to be one of a small subclass of pulsars that has a weak and a strong mode which alternate rapidly in time. PSR J1114−6100 has the fourth highest |RM| of any known pulsar despite its location far from the Galactic Centre. PSR J1825−1446 shows variations in both DM and RM likely due to its motion behind a foreground supernova remnant.


Sign in / Sign up

Export Citation Format

Share Document