scholarly journals A trade-off between Energy Efficiency and Spectral Efficiency in macro-femtocell networks

Author(s):  
Joydev Ghosh

<div>Obtaining large spectral efficiency (SE) and energy efficiency (EE) subject to quality of experience (QoE) is one of the prime concerns for the wireless next generation networks, however a major confrontation with its trade-off which is becoming apparent while optimizing both SE and EE parameters concurrently. In this work, an analytical framework for a cognitive-femtocell network is proposed to be dealt with and overcome the situations regarded as unwelcome. Here, the conflict of SE-EE trade-off in downlink (DL) transmission is expressed methodically by Pareto Optimal Set (POS) based on a multi-empirical most effective use of a resource scheme as a function of femto base station (FBS) and macro base station (MBS) transmit power and base station (BS) density, respectively. Then, SE and EE are formulated in a utility function by applying Cobb-Douglas production function to transform the multi- mpirical difficulty into the single-empirical optimization case. Besides, it is analytically shown that the SE-EE trade-off can be optimize through a distinctive universal optimum among the Pareto optimal by fine tuning the weighting metric other than BS transmit power and density, respectively. Simulation results validate that it is possible to obtain the EE-SE trade-off with SINR threshold at different weighting factor.</div>

2021 ◽  
Author(s):  
Joydev Ghosh

<div>Obtaining large spectral efficiency (SE) and energy efficiency (EE) subject to quality of experience (QoE) is one of the prime concerns for the wireless next generation networks, however a major confrontation with its trade-off which is becoming apparent while optimizing both SE and EE parameters concurrently. In this work, an analytical framework for a cognitive-femtocell network is proposed to be dealt with and overcome the situations regarded as unwelcome. Here, the conflict of SE-EE trade-off in downlink (DL) transmission is expressed methodically by Pareto Optimal Set (POS) based on a multi-empirical most effective use of a resource scheme as a function of femto base station (FBS) and macro base station (MBS) transmit power and base station (BS) density, respectively. Then, SE and EE are formulated in a utility function by applying Cobb-Douglas production function to transform the multi- mpirical difficulty into the single-empirical optimization case. Besides, it is analytically shown that the SE-EE trade-off can be optimize through a distinctive universal optimum among the Pareto optimal by fine tuning the weighting metric other than BS transmit power and density, respectively. Simulation results validate that it is possible to obtain the EE-SE trade-off with SINR threshold at different weighting factor.</div>


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1307
Author(s):  
Meng Zhang ◽  
Le Tan ◽  
Kelin Huang ◽  
Li You

As reconfigurable intelligent surfaces (RISs) have been gradually brought to reality, a large amount of research has been conducted to investigate the immense benefits of RISs. That is because RISs enable us to artificially direct the radio wave propagating through the environment at a relatively low cost. This paper investigates the trade-off between spectral efficiency (SE) and energy efficiency (EE) in the RIS-aided multi-user multiple-input single-output downlink. We develop an optimization framework for designing the transmitting precoding at the base station and the phase shift values at the RIS to balance the EE-SE trade-off. The proposed iterative optimization framework for the design includes quadratic transform, alternating optimization, and weighted minimization mean-square error conversion. Simulation results illustrate our optimization framework algorithm exhibits effectiveness and a fast convergence rate.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we initially dealt with the issue of spectrum allocation among macro (or “licensed”) and Femto (or “unlicensed”) users in an Orthogonal Frequency Devision Multiple Access (OFDMA) based dual-layer femtocell networks. This research contribution will lead to basic coin in the design of next generation (5G) wireless networks. This manuscript exemplifies the trade off issue of energy efficiency (EE) and spectral efficiency (SE) with both cooperative and non-cooperative architecture in cognitive femtocell networks. The pivotal concepts for each technology are described, along with their potential impact on 5G and the research challenges that remain. Further, the trade-off between EE and SE is reposed with respect to the state of the art. The obtained insightful observations from the trade-off analysis of EE ans SE can lead to provide design guideline for 5G wireless Networks.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we initially dealt with the issue of spectrum allocation among macro (or “licensed”) and Femto (or “unlicensed”) users in an Orthogonal Frequency Devision Multiple Access (OFDMA) based dual-layer femtocell networks. This research contribution will lead to basic coin in the design of next generation (5G) wireless networks. This manuscript exemplifies the trade off issue of energy efficiency (EE) and spectral efficiency (SE) with both cooperative and non-cooperative architecture in cognitive femtocell networks. The pivotal concepts for each technology are described, along with their potential impact on 5G and the research challenges that remain. Further, the trade-off between EE and SE is reposed with respect to the state of the art. The obtained insightful observations from the trade-off analysis of EE ans SE can lead to provide design guideline for 5G wireless Networks.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In downlink orthogonal frequency division multiple access (OFDMA) networks, an effective way of using the limited wireless spectrum resources can significantly improve network response. This paper presents a game-theoretic scheme with anticoordinated players by incorporating adaptation of femto base station (FBS) transmit power, attenuation of interference and utility function for open access mode and closed access mode respectively. The deployment of femtocells in the networks is to produce improved energy efficiency (EE) and optimized reponse of payoff function. In open access mode, each user belongs to the operator’s network can connect to the FBS and in closed access case, only a specified set of users can privately couple to the FBS whereas in the early access scenario it only allows authentic subscribers to take the advantage of femtocell networks. Additionally, the operating principle of spectrum sharing scheme has been discussed in which FBS as a player acquire knowledge from utility responses of their strategic communications and revise their strategies at each level of the game process. Here, an FBS is regarded as a player in the game to select the users who are satisfied to a greatest extent and an FBS plays a role of mentor. Thereafter, the equilibrium concept has been invoked to aid the anti-coordinated players for the strategies. Besides, a femtocell power adaptation algorithm has also been introduced based upon the set of enabled femtocells who can be used to retain its blocking probability that guarantees convergence to the stable strategy of the game, where the FBS monitors the subscribers’ actions and gives only limited data exchange. The simulations demonstrate that the proposed algorithm attains a high quality performance such as rapid convergence, interference attenuation to a greatest extent, noticeable EE improvement etc. Finally, validate the simulation results with its rarely studied extension in cognitive femtocell networks.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In downlink orthogonal frequency division multiple access (OFDMA) networks, an effective way of using the limited wireless spectrum resources can significantly improve network response. This paper presents a game-theoretic scheme with anticoordinated players by incorporating adaptation of femto base station (FBS) transmit power, attenuation of interference and utility function for open access mode and closed access mode respectively. The deployment of femtocells in the networks is to produce improved energy efficiency (EE) and optimized reponse of payoff function. In open access mode, each user belongs to the operator’s network can connect to the FBS and in closed access case, only a specified set of users can privately couple to the FBS whereas in the early access scenario it only allows authentic subscribers to take the advantage of femtocell networks. Additionally, the operating principle of spectrum sharing scheme has been discussed in which FBS as a player acquire knowledge from utility responses of their strategic communications and revise their strategies at each level of the game process. Here, an FBS is regarded as a player in the game to select the users who are satisfied to a greatest extent and an FBS plays a role of mentor. Thereafter, the equilibrium concept has been invoked to aid the anti-coordinated players for the strategies. Besides, a femtocell power adaptation algorithm has also been introduced based upon the set of enabled femtocells who can be used to retain its blocking probability that guarantees convergence to the stable strategy of the game, where the FBS monitors the subscribers’ actions and gives only limited data exchange. The simulations demonstrate that the proposed algorithm attains a high quality performance such as rapid convergence, interference attenuation to a greatest extent, noticeable EE improvement etc. Finally, validate the simulation results with its rarely studied extension in cognitive femtocell networks.</div>


Sign in / Sign up

Export Citation Format

Share Document