scholarly journals Evaluation of 20 kV Distribution Network Losses In Radial Distribution Systems Due to Distributed Generation Penetration

2021 ◽  
Vol 2129 (1) ◽  
pp. 012085
Author(s):  
H Arnawan ◽  
I Muzamir ◽  
I Y Mohd ◽  
R A R Siti ◽  
S Hadi

Abstract The installation of distributed generation with renewable energy becomes a solution when the demand for electricity is increasing and electricity generation with fossil energy is increasingly limited. There has been a change in power flow before and after the installation of distributed generation. However there can be a negative impact on the distribution network losses applicable to reactive power flows. There are cases where the distributed generation capacity is greater than the supplied load, resulting in distributed generation operating as a system voltage regulator and requiring reactive power, so that DG will absorb the reactive power from the system. The increasing demand for reactive power in DG also causes an increase in the current flowing in the network, and causes an increase in losses in the network, especially for the losses in reactive power.

2012 ◽  
Vol 516-517 ◽  
pp. 1425-1428
Author(s):  
Li Ming Wei ◽  
Jun Lin

The introduction of distributed generation will bring new challenges to the theory of power electricity market. The problem of loss allocation is one of them. In the paper three contents are introduced. Firstly, a loss allocation method is proposed for power distribution network with distributed generation. Secondly, the changes of loss allocation which introduction of distributed generation before and after brings about are analyzed and compared and relevant conclusions are obtained. Lastly, a typical mini-grid with a distributed generation is simulated. Simulation results prove the correctness and feasibility of the method.


2021 ◽  
Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>


2013 ◽  
Vol 645 ◽  
pp. 409-412
Author(s):  
Ting Yun Gu ◽  
Wei Niu ◽  
Gang Yao ◽  
Jie Na Zhou

Distributed generation technology is a new way of power generation and energy utilization, which has broad prospects for development. After Distributed Generation access to Distribution network near the load, the load distribution will changed.In this paper, discuss the different access location that distributed generation access to the distributed network has different influence to voltage and loss. At the same time, Combination of theory and practical example simulation to description of distributed power generation how to influence the distribution network voltage and network losses. Finally, it’s a brief introduction to the reactive power control strategy of distributed power generation systems.


2021 ◽  
Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>


2014 ◽  
Vol 960-961 ◽  
pp. 1460-1464
Author(s):  
Hao Jie Shi ◽  
Xing Ying Chen ◽  
Kai Chen ◽  
Jian Liu ◽  
Kun Yu

The impact of distributed generation (DG) on distribution power losses is closely related to DG technologies and load distribution. DG units are modeled as PQ, PQ(V) and PV nodes in power flow calculation. A revised back/forward power flow method is employed to calculate distribution power flow with various types of DG units. Power losses are computed when different types of DG units are connected to heavy load, general load and light load area apart. Simulation on IEEE 33-bus distribution network shows that connecting DG to heavy load area helps to maximize the loss reduction. And the installation of DG consuming reactive power will increase network losses unless reactive power compensation device is installed accordingly.


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


Author(s):  
Mostafa Elshahed ◽  
Mahmoud Dawod ◽  
Zeinab H. Osman

Integrating Distributed Generation (DG) units into distribution systems can have an impact on the voltage profile, power flow, power losses, and voltage stability. In this paper, a new methodology for DG location and sizing are developed to minimize system losses and maximize voltage stability index (VSI). A proper allocation of DG has to be determined using the fuzzy ranking method to verify best compromised solutions and achieve maximum benefits. Synchronous machines are utilized and its power factor is optimally determined via genetic optimization to inject reactive power to decrease system losses and improve voltage profile and VSI. The Augmented Lagrangian Genetic Algorithm with nonlinear mixed-integer variables and Non-dominated Sorting Genetic Algorithm have been implemented to solve both single/multi-objective function optimization problems. For proposed methodology effectiveness verification, it is tested on 33-bus and 69-bus radial distribution systems then compared with previous works.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 60-67 ◽  
Author(s):  
John Edwin Candelo-Becerra ◽  
Helman Hernández-Riaño

<p>Distributed generation (DG) is an important issue for distribution networks due to the improvement in power losses, but the location and size of generators could be a difficult task for exact techniques. The metaheuristic techniques have become a better option to determine good solutions and in this paper the application of a bat-inspired algorithm (BA) to a problem of location and size of distributed generation in radial distribution systems is presented. A comparison between particle swarm optimization (PSO) and BA was made in the 33-node and 69-node test feeders, using as scenarios the change in active and reactive power, and the number of generators. PSO and BA found good results for small number and capacities of generators, but BA obtained better results for difficult problems and converged faster for all scenarios. The maximum active power injections to reduce power losses in the distribution networks were found for the five scenarios.</p>


2013 ◽  
Vol 16 (2) ◽  
pp. 43-53
Author(s):  
Chuong Trong Trinh ◽  
Anh Viet Truong ◽  
Tu Phan Vu

There are now a lot of distributed generation (DG) using asynchronous machines are connected to power distribution grid. These machines do not usually generate reactive power, even consume reactive power, so they generally affect the voltage stability of whole power grid, and can cause instability in itself it is no longer balanced by the torque to work. In this paper, we investigate the voltage stability problem of the asynchronous machine of wind turbines used in power distribution networks. From the static model of the asynchronous machine, this paper will apply the pragmatic criteria to analysis the voltage stability of the asynchronous machine based on the results of the power flow in power distribution network.


Author(s):  
Marija D. Ilic ◽  
Pedro M. S. Carvalho

We propose to conceptualise electric energy systems as complex dynamical systems using physically intuitive multilayered energy modelling as the basis for systematic diverse technology integration, and control in on-line operations. It is shown that such modelling exhibits unique structure which comes from the conservation of instantaneous power (P) and of instantaneous reactive power ( _Q), (interaction variables (intVar)) at the interfaces of subsystems. The intVars are used as a means to model and control the interactive zoomed-out inter-modular (inter-area, inter-component) system dynamics. Control co-design can then be pursued using these models so that the primary control shapes intVars of its own module by using its own lowlevel detailed technology-specific model and intVar info exchange with the neighbours. As a result, we describe how the proposed approach can be used to support orderly evolution from today’s hierarchical control to a platform enabling flexible interactive protocols for electricity services. The potential for practical use of the proposed concepts is far-reaching and transparent. All that needs to be conceived is that intVar characterising any intelligent Balancing Authority (iBA) is a generalisation of today’s Area Control Error (ACE) characterising net energy balance of a Balancing Authority (BA). An iBA can be any subsystem with its own sub-objectives, such as distributed energy resources (DERs) comprising customers and grid forming microgrids; distribution systems; transmission systems; Independent System Operators (ISOs); and, ultimately, electric energy markets within large interconnection. Several industry problems are described as particular sub-problems of general interactive electricity services. These formulations help one compare models and assumptions used as part of current solutions, and propose enhanced solutions. Most generally, feasibility and stability conditions can be introduced for ensuring feasible power flow solutions, regulated frequency and voltage and orderly power exchange across the iBAs.


Sign in / Sign up

Export Citation Format

Share Document