scholarly journals Eigenvalue Decomposition Precoded Faster-Than-Nyquist Transmission of Index Modulated Symbols

Author(s):  
Prakash Chaki ◽  
Takumi Ishihara ◽  
Shinya Sugiura

Postprint accepted on 30 April 2021 for publication in IEEE International Symposium on Information Theory (ISIT), 2021. (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.<div>In this paper, we propose a precoded faster-than-Nyquist (FTN) signaling technique for time-domain single-carrier index modulated (IM) symbol transmission. More precisely, eigenvalue decomposition precoding is adopted for the FTN transmission of data bits modulated by single-carrier time-domain IM. While the FTN scheme increases the spectral efficiency and data rate by packing more transmit symbols per block duration than those defined in the Nyquist criterion, time-domain IM works towards the same objective while maintaining symbol sparsity. We analytically derive the constrained capacity of the proposed system. Our simulation results show that the proposed scheme has better bit error ratio (BER) performance over the conventional FTN-IM scheme, particularly for the scenario of a higher packing ratio. In the proposed scheme, $2.5$-dB performance gain is observed at the BER of 10<sup>-4</sup>, employing the packing ratio of $0.7$ and the roll-off factor of $0.5$ in a channel-uncoded scenario.<br></div>

2021 ◽  
Author(s):  
Prakash Chaki ◽  
Takumi Ishihara ◽  
Shinya Sugiura

Postprint accepted on 30 April 2021 for publication in IEEE International Symposium on Information Theory (ISIT), 2021. (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.<div>In this paper, we propose a precoded faster-than-Nyquist (FTN) signaling technique for time-domain single-carrier index modulated (IM) symbol transmission. More precisely, eigenvalue decomposition precoding is adopted for the FTN transmission of data bits modulated by single-carrier time-domain IM. While the FTN scheme increases the spectral efficiency and data rate by packing more transmit symbols per block duration than those defined in the Nyquist criterion, time-domain IM works towards the same objective while maintaining symbol sparsity. We analytically derive the constrained capacity of the proposed system. Our simulation results show that the proposed scheme has better bit error ratio (BER) performance over the conventional FTN-IM scheme, particularly for the scenario of a higher packing ratio. In the proposed scheme, $2.5$-dB performance gain is observed at the BER of 10<sup>-4</sup>, employing the packing ratio of $0.7$ and the roll-off factor of $0.5$ in a channel-uncoded scenario.<br></div>


2013 ◽  
Vol 427-429 ◽  
pp. 2432-2435
Author(s):  
Yu Lei Zhang ◽  
Tian Yuan Zhang ◽  
Shu Xin Guo

Similar to the orthogonal frequency division multiple access (OFDMA) system, the carrier frequency offset (CFO) is a challenging problem in the single carrier frequency division multiple access (SC-FDMA) system, which can destroy the orthogonality among the subcarriers. As a consequence, multi-access interference (MAI) along with serious performance degradation will be induced. In this paper, a zero forcing (ZF)-based MAI cancellation scheme is proposed. Compared with other cancellation schemes, the proposed one mitigates the interferences in the time domain instead of the frequency domain. Simulation results show that the proposed method can significantly reduce the degradation and enhance the Bit Error Ratio (BER) performance.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1880-1884
Author(s):  
Bin Ni

Music algorithm has good spatial resolution, provides the possibility to further improve the performance of fire radio communication system, but the algorithm in the target range rapidly changing circumstances poor stability. Aiming at this problem, this paper proposes a MUSIC algorithm based on time domain analytical signals (TAMUSIC, Time-domain Analysis MUSIC). The TAMUISC algorithm first constructs analytical time-domain signal; then the time domain analytical signal covariance matrix; finally the covariance matrix eigenvalue decomposition, the noise subspace estimation results of spatial spectrum. The simulation results show that, TAMUSIC algorithm in target azimuth change quickly, compared with the conventional MUSIC algorithm, need a short observation time, observation has smaller variance.


2013 ◽  
Vol 397-400 ◽  
pp. 2004-2007
Author(s):  
Wen Yan Ding ◽  
Zhi Ning Sun ◽  
Xiang Long Wang

The design on the system of low-voltage power line carrier-current communication based on OFDM was finished in this paper. Then model of the system was simulated and the modulation and demodulation of OFDM were realized. The results show that the integral performance can be enhanced with channel code. And the bit error ratio (BER) of the system is different with several sub-carrier wave modulation modes. This system could satisfy the requirement of power line communication basically.


2021 ◽  
Author(s):  
Nandhini Devi R ◽  
Leones Sherwin VimalrajS ◽  
Lydia J

This paper suggests a scheme to generalize the idea of LED index modulation concept by using the spatial multiplexing principle to relay complex OFDM signals through various channels such as AWGN, Rayleigh and Rician by splitting these signals into their real-imaginary and positive-negative components. In order to combat ISI as well as to increase the channel capacity. The MIMO-OFDM efficiency analysis, taking into account the constraint of the forward current of the LED is extracted. The accuracy of the theoretical results is verified by comparing the Bit Error Ratio (BER) reduction and improvement to the (SNR) results under varying condition of the channel. Using MIMO-OFDM as next-generation techniques, along with QAM aims to provide development of new concepts that will lead to the growth of future optical communication. Simulation results validate data rates gained over optical communication using LED modulation scheme and the pure transmission diversity method.


2021 ◽  
Author(s):  
Tharaj Thaj ◽  
Emanuele Viterbo

This paper proposes <i>orthogonal time sequency multiplexing</i> (OTSM), a novel single carrier modulation scheme based on the well known Walsh-Hadamard transform (WHT) combined with row-column interleaving, and zero padding (ZP) between blocks in the time-domain. The information symbols in OTSM are multiplexed in the delay and sequency domain using a cascade of time-division and Walsh-Hadamard (sequency) multiplexing. By using the WHT for transmission and reception, the modulation and demodulation steps do not require any complex multiplications. We then propose two low-complexity detectors: (i) a simpler non-iterative detector based on a single tap minimum mean square time-frequency domain equalizer and (ii) an iterative time-domain detector. We demonstrate, via numerical simulations, that the proposed modulation scheme offers high performance gains over orthogonal frequency division multiplexing (OFDM) and exhibits the same performance of orthogonal time frequency space (OTFS) modulation, but with lower complexity. In proposing OTSM, along with simple detection schemes, we offer the lowest complexity solution to achieving reliable communication in high mobility wireless channels, as compared to the available schemes published so far in the literature.


Sign in / Sign up

Export Citation Format

Share Document