scholarly journals Risk-based constraints with correlated uncertainties for the optimal operation of an energy community

Author(s):  
Mihály Dolányi ◽  
Kenneth Bruninx ◽  
Jean-François Toubeau ◽  
Erik Delarue

<div>This paper formulates an energy community's centralized optimal bidding and scheduling problem as a time-series scenario-driven stochastic optimization model, building on real-life measurement data. In the presented model, a surrogate battery storage system with uncertain state-of-charge (SoC) bounds approximates the portfolio's aggregated flexibility. </div><div>First, it is emphasized in a stylized analysis that risk-based energy constraints are highly beneficial (compared to chance-constraints) in coordinating distributed assets with unknown costs of constraint violation, as they limit both violation magnitude and probability. The presented research extends state-of-the-art models by implementing a worst-case conditional value at risk (WCVaR) based constraint for the storage SoC bounds. Then, an extensive numerical comparison is conducted to analyze the trade-off between out-of-sample violations and expected objective values, revealing that the proposed WCVaR based constraint shields significantly better against extreme out-of-sample outcomes than the conditional value at risk based equivalent.</div><div>To bypass the non-trivial task of capturing the underlying time and asset-dependent uncertain processes, real-life measurement data is directly leveraged for both imbalance market uncertainty and load forecast errors. For this purpose, a shape-based clustering method is implemented to capture the input scenarios' temporal characteristics.</div>

2005 ◽  
Vol 08 (01) ◽  
pp. 13-58 ◽  
Author(s):  
ALEXEI CHEKHLOV ◽  
STANISLAV URYASEV ◽  
MICHAEL ZABARANKIN

A new one-parameter family of risk measures called Conditional Drawdown (CDD) has been proposed. These measures of risk are functionals of the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter α, in the case of a single sample path, drawdown functional is defined as the mean of the worst (1 - α) * 100% drawdowns. The CDD measure generalizes the notion of the drawdown functional to a multi-scenario case and can be considered as a generalization of deviation measure to a dynamic case. The CDD measure includes the Maximal Drawdown and Average Drawdown as its limiting cases. Mathematical properties of the CDD measure have been studied and efficient optimization techniques for CDD computation and solving asset-allocation problems with a CDD measure have been developed. The CDD family of risk functionals is similar to Conditional Value-at-Risk (CVaR), which is also called Mean Shortfall, Mean Excess Loss, or Tail Value-at-Risk. Some recommendations on how to select the optimal risk functionals for getting practically stable portfolios have been provided. A real-life asset-allocation problem has been solved using the proposed measures. For this particular example, the optimal portfolios for cases of Maximal Drawdown, Average Drawdown, and several intermediate cases between these two have been found.


Author(s):  
Jhuma Ray ◽  
Siddhartha Bhattacharyya ◽  
N. Bhupendro Singh

Over the past few decades, an extensive research on the multi-objective decision making and combinatorial optimization of real world's financial transactions has taken place. The modern capital market theory problem of portfolio optimization stands to be a multi-objective problem aiming at the maximization of the expected return of the portfolio in turn minimizing portfolio risk. The conditional value-at-risk (CVaR) is a widely used measure for determining the risk measures of a portfolio in volatile market conditions. A heuristic approach to portfolio optimization problem using ant colony optimization (ACO) technique centering on optimizing the conditional value-at-risk (CVaR) measure in different market conditions based on several objectives and constraints has been reported in this paper. The proposed ACO approach is proved to be reliable on a collection of several real-life financial instruments as compared to its value-at-risk (VaR) counterpart. The results obtained show encouraging avenues in determining optimal portfolio returns.


2019 ◽  
Vol 146 ◽  
pp. 201-210 ◽  
Author(s):  
Lili Wei ◽  
Yudong Shen ◽  
Zuwei Liao ◽  
Jingyuan Sun ◽  
Binbo Jiang ◽  
...  

2019 ◽  
Vol 256 ◽  
pp. 113918 ◽  
Author(s):  
Yangyang Liu ◽  
Zhongqi Shen ◽  
Xiaowei Tang ◽  
Hongbo Lian ◽  
Jiarui Li ◽  
...  

2014 ◽  
Vol 16 (6) ◽  
pp. 3-29 ◽  
Author(s):  
Samuel Drapeau ◽  
Michael Kupper ◽  
Antonis Papapantoleon

Sign in / Sign up

Export Citation Format

Share Document