DRAWDOWN MEASURE IN PORTFOLIO OPTIMIZATION

2005 ◽  
Vol 08 (01) ◽  
pp. 13-58 ◽  
Author(s):  
ALEXEI CHEKHLOV ◽  
STANISLAV URYASEV ◽  
MICHAEL ZABARANKIN

A new one-parameter family of risk measures called Conditional Drawdown (CDD) has been proposed. These measures of risk are functionals of the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter α, in the case of a single sample path, drawdown functional is defined as the mean of the worst (1 - α) * 100% drawdowns. The CDD measure generalizes the notion of the drawdown functional to a multi-scenario case and can be considered as a generalization of deviation measure to a dynamic case. The CDD measure includes the Maximal Drawdown and Average Drawdown as its limiting cases. Mathematical properties of the CDD measure have been studied and efficient optimization techniques for CDD computation and solving asset-allocation problems with a CDD measure have been developed. The CDD family of risk functionals is similar to Conditional Value-at-Risk (CVaR), which is also called Mean Shortfall, Mean Excess Loss, or Tail Value-at-Risk. Some recommendations on how to select the optimal risk functionals for getting practically stable portfolios have been provided. A real-life asset-allocation problem has been solved using the proposed measures. For this particular example, the optimal portfolios for cases of Maximal Drawdown, Average Drawdown, and several intermediate cases between these two have been found.

Author(s):  
Jhuma Ray ◽  
Siddhartha Bhattacharyya ◽  
N. Bhupendro Singh

Over the past few decades, an extensive research on the multi-objective decision making and combinatorial optimization of real world's financial transactions has taken place. The modern capital market theory problem of portfolio optimization stands to be a multi-objective problem aiming at the maximization of the expected return of the portfolio in turn minimizing portfolio risk. The conditional value-at-risk (CVaR) is a widely used measure for determining the risk measures of a portfolio in volatile market conditions. A heuristic approach to portfolio optimization problem using ant colony optimization (ACO) technique centering on optimizing the conditional value-at-risk (CVaR) measure in different market conditions based on several objectives and constraints has been reported in this paper. The proposed ACO approach is proved to be reliable on a collection of several real-life financial instruments as compared to its value-at-risk (VaR) counterpart. The results obtained show encouraging avenues in determining optimal portfolio returns.


2021 ◽  
Vol 14 (5) ◽  
pp. 201
Author(s):  
Yuan Hu ◽  
W. Brent Lindquist ◽  
Svetlozar T. Rachev

This paper investigates performance attribution measures as a basis for constraining portfolio optimization. We employ optimizations that minimize conditional value-at-risk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the performance attributes are established relative to two benchmarks, equi-weighted and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio, Sortino–Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds. The results also suggest a positive role in price and risk-measure performance for the imposition of constraints on AA and SE.


2018 ◽  
Vol 21 ◽  
pp. 76-89 ◽  
Author(s):  
Thong Nguyen-Huy ◽  
Ravinesh C. Deo ◽  
Shahbaz Mushtaq ◽  
Jarrod Kath ◽  
Shahjahan Khan

2020 ◽  
Vol 8 (3) ◽  
pp. 54
Author(s):  
Ramesh Adhikari ◽  
Kyle J. Putnam ◽  
Humnath Panta

This paper examines the performance of a naïve equally weighted buy-and-hold portfolio and optimization-based commodity futures portfolios for various lookback and holding periods using data from January 1986 to December 2018. The application of Monte Carlo simulation-based mean-variance and conditional value-at-risk optimization techniques are used to construct the robust commodity futures portfolios. This paper documents the benefits of applying a sophisticated, robust optimization technique to construct commodity futures portfolios. We find that a 12-month lookback period contains the most useful information in constructing optimization-based portfolios, and a 1-month holding period yields the highest returns among all the holding periods examined in the paper. We also find that an optimized conditional value-at-risk portfolio using a 12-month lookback period outperforms an optimized mean-variance portfolio using the same lookback period. Our findings highlight the advantages of using robust optimization for portfolio formation in the presence of return uncertainty in the commodity futures markets. The results also highlight the practical importance of choosing the appropriate lookback and holding period when using robust optimization in the commodity portfolio formation process.


2018 ◽  
Vol 7 (3) ◽  
pp. 175
Author(s):  
Kevin Wunderlich ◽  
Emmanuel Thompson

<span>Fragile and conflict affected states (FCAS) are those in which the government lacks the political will and/or capacity to provide the basic functions necessary for poverty reduction, economic development, and the security of human rights of their populations.</span><span>Until recent history, unfortunately, the majority of research conducted and universal health care debates have been centered around middle income and emerging economies. As a result, FCAS have been neglected from many global discussions and decisions. Due to this neglect, many FCAS do not have proper vaccinations and antibiotics. Seemingly, well estimated health care costs are a necessary stepping stone in improving the health of citizens among FCAS. Fortunately, developments in statistical learning theory combined with data obtained by the WBG and Transparency International make it possible to accurately model health care cost among FCAS. The data used in this paper consisted of 35 countries and 89 variables. Of these 89 variables, health care expenditure (HCE) was the only response variable. With 88 predictor variables, there was expected to be multicollinearity, which occurs when multiple variables share relatively large absolute correlation. Since multicollinearity is expected and the number of variables is far greater than the number of observations, this paper adopts Zou and Hastie’</span><span lang="IN">s </span><span>method of regularization via elastic net (ENET). In order to accurately estimate the maximum and expected maximum HCE among FCAS, well-known risk measures, such as Value at Risk and Conditional Value at Risk, and related quantities were obtained via Monte Carlo simulations. This paper obtained risk measures at 95 security level.</span>


2021 ◽  
Author(s):  
Mihály Dolányi ◽  
Kenneth Bruninx ◽  
Jean-François Toubeau ◽  
Erik Delarue

<div>This paper formulates an energy community's centralized optimal bidding and scheduling problem as a time-series scenario-driven stochastic optimization model, building on real-life measurement data. In the presented model, a surrogate battery storage system with uncertain state-of-charge (SoC) bounds approximates the portfolio's aggregated flexibility. </div><div>First, it is emphasized in a stylized analysis that risk-based energy constraints are highly beneficial (compared to chance-constraints) in coordinating distributed assets with unknown costs of constraint violation, as they limit both violation magnitude and probability. The presented research extends state-of-the-art models by implementing a worst-case conditional value at risk (WCVaR) based constraint for the storage SoC bounds. Then, an extensive numerical comparison is conducted to analyze the trade-off between out-of-sample violations and expected objective values, revealing that the proposed WCVaR based constraint shields significantly better against extreme out-of-sample outcomes than the conditional value at risk based equivalent.</div><div>To bypass the non-trivial task of capturing the underlying time and asset-dependent uncertain processes, real-life measurement data is directly leveraged for both imbalance market uncertainty and load forecast errors. For this purpose, a shape-based clustering method is implemented to capture the input scenarios' temporal characteristics.</div>


2016 ◽  
Vol 11 (3) ◽  
pp. 277-298
Author(s):  
Anna Rutkowska-Ziarko ◽  
Przemysław Garsztka

The aim of the research is to compare the efficiency of managing selected Polish investment funds in various phases of stock market condition. The Value at Risk (VaR) and Conditional Value at Risk (CVaR) is used to construct efficiency ratios of fund management. Those funds investing in financial instruments have the most stable expected rate of return and the lowest risk, in all the analysed periods which made them highly effective. The article also discusses the alternative methods to VaR and CVaR estimation which are used in the study. It is noted VaR and CVaR estimates obtained using backtesting and using APARCH models give similar results.


Sign in / Sign up

Export Citation Format

Share Document