scholarly journals Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion

Author(s):  
zhifei hu

In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.<br>

2021 ◽  
Author(s):  
zhifei hu

In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.<br>


2020 ◽  
Vol 39 (4) ◽  
pp. 4935-4945
Author(s):  
Qiuyun Cheng ◽  
Yun Ke ◽  
Ahmed Abdelmouty

Aiming at the limitation of using only word features in traditional deep learning sentiment classification, this paper combines topic features with deep learning models to build a topic-fused deep learning sentiment classification model. The model can fuse topic features to obtain high-quality high-level text features. Experiments show that in binary sentiment classification, the highest classification accuracy of the model can reach more than 90%, which is higher than that of commonly used deep learning models. This paper focuses on the combination of deep neural networks and emerging text processing technologies, and improves and perfects them from two aspects of model architecture and training methods, and designs an efficient deep network sentiment analysis model. A CNN (Convolutional Neural Network) model based on polymorphism is proposed. The model constructs the CNN input matrix by combining the word vector information of the text, the emotion information of the words, and the position information of the words, and adjusts the importance of different feature information in the training process by means of weight control. The multi-objective sample data set is used to verify the effectiveness of the proposed model in the sentiment analysis task of related objects from the classification effect and training performance.


2021 ◽  
Vol 223 ◽  
pp. 107058
Author(s):  
Mayukh Sharma ◽  
Ilanthenral Kandasamy ◽  
W.B. Vasantha

2021 ◽  
pp. 101224
Author(s):  
Saja Al-Dabet ◽  
Sara Tedmori ◽  
Mohammad AL-Smadi

2021 ◽  
Vol 87 (4) ◽  
pp. 283-293
Author(s):  
Wei Wang ◽  
Yuan Xu ◽  
Yingchao Ren ◽  
Gang Wang

Recently, performance improvement in facade parsing from 3D point clouds has been brought about by designing more complex network structures, which cost huge computing resources and do not take full advantage of prior knowledge of facade structure. Instead, from the perspective of data distribution, we construct a new hierarchical mesh multi-view data domain based on the characteristics of facade objects to achieve fusion of deep-learning models and prior knowledge, thereby significantly improving segmentation accuracy. We comprehensively evaluate the current mainstream method on the RueMonge 2014 data set and demonstrate the superiority of our method. The mean intersection-over-union index on the facade-parsing task reached 76.41%, which is 2.75% higher than the current best result. In addition, through comparative experiments, the reasons for the performance improvement of the proposed method are further analyzed.


2021 ◽  
Author(s):  
Matheus Xavier Sampaio ◽  
Regis Pires Magalhães ◽  
Ticiana Linhares Coelho da Silva ◽  
Lívia Almada Cruz ◽  
Davi Romero de Vasconcelos ◽  
...  

Automatic Speech Recognition (ASR) is an essential task for many applications like automatic caption generation for videos, voice search, voice commands for smart homes, and chatbots. Due to the increasing popularity of these applications and the advances in deep learning models for transcribing speech into text, this work aims to evaluate the performance of commercial solutions for ASR that use deep learning models, such as Facebook Wit.ai, Microsoft Azure Speech, and Google Cloud Speech-to-Text. The results demonstrate that the evaluated solutions slightly differ. However, Microsoft Azure Speech outperformed the other analyzed APIs.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2021 ◽  
Vol 336 ◽  
pp. 05008
Author(s):  
Cheng Wang ◽  
Sirui Huang ◽  
Ya Zhou

The accurate exploration of the sentiment information in comments for Massive Open Online Courses (MOOC) courses plays an important role in improving its curricular quality and promoting MOOC platform’s sustainable development. At present, most of the sentiment analyses of comments for MOOC courses are actually studies in the extensive sense, while relatively less attention is paid to such intensive issues as the polysemous word and the familiar word with an upgraded significance, which results in a low accuracy rate of the sentiment analysis model that is used to identify the genuine sentiment tendency of course comments. For this reason, this paper proposed an ALBERT-BiLSTM model for sentiment analysis of comments for MOOC courses. Firstly, ALBERT was used to dynamically generate word vectors. Secondly, the contextual feature vectors were obtained through BiLSTM pre-sequence and post-sequence, and the attention mechanism that could calculate the weight of different words in a sentence was applied together. Finally, the BiLSTM output vectors were input into Softmax for the classification of sentiments and prediction of the sentimental tendency. The experiment was performed based on the genuine data set of comments for MOOC courses. It was proved in the result that the proposed model was higher in accuracy rate than the already existing models.


2021 ◽  
Author(s):  
Jaydip Sen ◽  
Sidra Mehtab ◽  
Gourab Nath

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modeled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using five deep learning-based regression models. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of December 29, 2014 to July 31, 2020. Based on the NIFTY data during December 29, 2014 to December 28, 2018, we build two regression models using <i>convolutional neural networks</i> (CNNs), and three regression models using <i>long-and-short-term memory</i> (LSTM) networks for predicting the <i>open</i> values of the NIFTY 50 index records for the period December 31, 2018 to July 31, 2020. We adopted a multi-step prediction technique with <i>walk-forward validation</i>. The parameters of the five deep learning models are optimized using the grid-search technique so that the validation losses of the models stabilize with an increasing number of epochs in the model training, and the training and validation accuracies converge. Extensive results are presented on various metrics for all the proposed regression models. The results indicate that while both CNN and LSTM-based regression models are very accurate in forecasting the NIFTY 50 <i>open</i> values, the CNN model that previous one week’s data as the input is the fastest in its execution. On the other hand, the encoder-decoder convolutional LSTM model uses the previous two weeks’ data as the input is found to be the most accurate in its forecasting results.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Sign in / Sign up

Export Citation Format

Share Document