scholarly journals Procedural Level Generation for Sokoban via Deep Learning: An Experimental Study

Author(s):  
Yahia Zakaria ◽  
Mayada Hadhoud ◽  
Magda Fayek

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are rare and usually limited to the work they extend upon. This paper's goal is to conduct an experimental study on four recent deep learning procedural level generators for Sokoban to explore their strengths and weaknesses. The methods will be bootstrapping conditional generative models, controllable & uncontrollable procedural content generation via reinforcement learning (PCGRL) and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their efficiency and performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, auxiliary targets to enhance the models' quality and Gaussian mixture models to improve the sample quality. The results show that diversity sampling at least doubles the unique plan count in the generated levels. On average, auxiliary targets increases the quality by 24% and sampling conditions from Gaussian mixture models increases the sample quality by 13%. Overall, PCGRL shows superior quality and diversity while generative adversarial networks exhibit the least control confusion when trained with diversity sampling and auxiliary targets.

2021 ◽  
Author(s):  
Yahia Zakaria ◽  
Mayada Hadhoud ◽  
Magda Fayek

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are either nonexistent or limited to the works they extend upon. This paper’s goal is to conduct an experimental study on four recent deep learning procedural level generation methods for Sokoban (size = 7 × 7) to explore their strengths and weaknesses and provide insights for possible research directions. The methods will be bootstrapping conditional generative models, controllable & uncontrollable procedural content generation via reinforcement learning (PCGRL) and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their efficiency and performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, auxiliary targets to enhance the models’ quality and Gaussian mixture models to improve the sample quality. The results show that diversity sampling at least doubles the unique plan count in the generated levels. On average, auxiliary targets increases the quality by 24% and sampling conditions from Gaussian mixture models increases the sample quality by 13%. Overall, PCGRL shows superior quality and diversity while generative adversarial networks exhibit the least control confusion when trained with diversity sampling and auxiliary targets.


2021 ◽  
Author(s):  
Yahia Zakaria ◽  
Mayada Hadhoud ◽  
Magda Fayek

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are rare and usually limited to the work they extend upon. This paper's goal is to conduct an experimental study on four recent deep learning procedural level generators for Sokoban to explore their strengths and weaknesses. The methods will be bootstrapping conditional generative models, controllable & uncontrollable procedural content generation via reinforcement learning (PCGRL) and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their efficiency and performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, auxiliary targets to enhance the models' quality and Gaussian mixture models to improve the sample quality. The results show that diversity sampling at least doubles the unique plan count in the generated levels. On average, auxiliary targets increases the quality by 24% and sampling conditions from Gaussian mixture models increases the sample quality by 13%. Overall, PCGRL shows superior quality and diversity while generative adversarial networks exhibit the least control confusion when trained with diversity sampling and auxiliary targets.


2021 ◽  
Author(s):  
Yahia Zakaria

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are either nonexistent or limited to the works they extend upon. This paper’s goal is to conduct an experimental study on four recent deep learning procedural level generation methods for Sokoban (size = 7 × 7) to explore their strengths and weaknesses and provide insights for possible research directions. The methods will be bootstrapping conditional generative models, controllable & uncontrollable procedural content generation via reinforcement learning (PCGRL) and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their efficiency and performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, auxiliary targets to enhance the models’ quality and Gaussian mixture models to improve the sample quality. The results show that diversity sampling at least doubles the unique plan count in the generated levels. On average, auxiliary targets increases the quality by 24% and sampling conditions from Gaussian mixture models increases the sample quality by 13%. Overall, PCGRL shows superior quality and diversity while generative adversarial networks exhibit the least control confusion when trained with diversity sampling and auxiliary targets.


2017 ◽  
Vol 34 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou ◽  
...  

2013 ◽  
Vol 141 (6) ◽  
pp. 1737-1760 ◽  
Author(s):  
Thomas Sondergaard ◽  
Pierre F. J. Lermusiaux

Abstract This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also rigorously utilizes the governing dynamical equations with information theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively approximating the Fokker–Planck equation. At assimilation times, the DO realizations are fit to semiparametric Gaussian Mixture Models (GMMs) using the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’s law is then efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.


Sign in / Sign up

Export Citation Format

Share Document