scholarly journals Low-to-Zero-Overhead IRS Reconfiguration: Decoupling Illumination and Channel Estimation

Author(s):  
Vahid Jamali

Most algorithms developed so far for the optimization of Intelligent Reflecting Surfaces (IRSs) require knowledge of full Channel State Information (CSI). However, the resulting acquisition overhead constitutes a major bottleneck for the realization of IRS-assisted wireless systems in practice. In contrast, in this paper, focusing on downlink transmissions from a Base Station (BS) to a Mobile User (MU) that is located in a blockage region, we propose to optimize the IRS for illumination of the area centered around the MU. Hence, the proposed design requires the estimation of the MU’s position and not the full CSI. For a given IRS phase-shift configuration, the end-to-end BS-IRS-MU channel can then be estimated using conventional channel estimation techniques. The IRS reconfiguration overhead for the proposed scheme depends on the MU mobility as well as how wide the coverage of the IRS illumination is. Therefore, we develop a general IRS phase-shift design, which is valid for both the near- and far-field regimes and features a parameter for tuning the size of the illumination area. Moreover, we study a special case where the IRS illuminates the entire blockage area, which implies that the IRS phase shifts do not change over time leading to zero overhead for IRS reconfiguration.

2021 ◽  
Author(s):  
Vahid Jamali

Most algorithms developed so far for the optimization of Intelligent Reflecting Surfaces (IRSs) require knowledge of full Channel State Information (CSI). However, the resulting acquisition overhead constitutes a major bottleneck for the realization of IRS-assisted wireless systems in practice. In contrast, in this paper, focusing on downlink transmissions from a Base Station (BS) to a Mobile User (MU) that is located in a blockage region, we propose to optimize the IRS for illumination of the area centered around the MU. Hence, the proposed design requires the estimation of the MU’s position and not the full CSI. For a given IRS phase-shift configuration, the end-to-end BS-IRS-MU channel can then be estimated using conventional channel estimation techniques. The IRS reconfiguration overhead for the proposed scheme depends on the MU mobility as well as how wide the coverage of the IRS illumination is. Therefore, we develop a general IRS phase-shift design, which is valid for both the near- and far-field regimes and features a parameter for tuning the size of the illumination area. Moreover, we study a special case where the IRS illuminates the entire blockage area, which implies that the IRS phase shifts do not change over time leading to zero overhead for IRS reconfiguration.


2010 ◽  
Vol 69 (3) ◽  
Author(s):  
W. F. Harris

For a dioptric system with elements which may be heterocentric and astigmatic an optical axis has been defined to be a straight line along which a ray both enters and emerges from the system.  Previous work shows that the dioptric system may or may not have an optical axis and that, if it does have one, then that optical axis may or may not be unique.  Formulae were derived for the locations of any optical axes.  The purpose of this paper is to extend those results to allow for reflecting surfaces in the system in addition to refracting elements.  Thus the paper locates any optical axes in catadioptric systems (including dioptric systems as a special case).  The reflecting surfaces may be astigmatic and decentred or tilted.  The theory is illustrated by means of numerical examples.  The locations of the optical axes are calculated for seven optical systems associated with a particular heterocentric astigmatic model eye.  The optical systems are the visual system, the four Purkinje systems and two other nonvisual systems of the eye.  The Purkinje systems each have an infinity of optical axes whereas the other nonvisual systems, and the visual system, each have a unique optical axis. (S Afr Optom 2010 69(3) 152-160)


Sign in / Sign up

Export Citation Format

Share Document