partial channel
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 19)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 2100 (1) ◽  
pp. 012015
Author(s):  
D A Tarasov ◽  
A A Firsov

Abstract The main purpose of this work is to simulate a dynamics of DC discharge in a subsonic airflow. The calculations were performed in the FlowVision 3.12.01 software package. The single-fluid model (MHD approach) of equilibrium plasma was used while the initial discharge channel was set manually. Cylindrical coaxially arranged electrodes were located in the central part of the calculation area, in the core of the airflow. A 5A DC discharge at atmospheric pressure was considered, as well as a simple model of a re-breakdown between parts of discharge filament. In this work, three-dimensional distributions of temperature and current density were obtained during an evolution of discharge in a flow. Discharge channel extension by the airflow and partial channel decay after the re-breakdown process were shown.


Geology ◽  
2020 ◽  
Author(s):  
Léa Guiastrennec-Faugas ◽  
Hervé Gillet ◽  
Jeff Peakall ◽  
Bernard Dennielou ◽  
Arnaud Gaillot ◽  
...  

Submarine channels are the main conduits and intermediate stores for sediment transport into the deep sea, including organics, pollutants, and microplastics. Key drivers of morphological change in channels are upstream-migrating knickpoints whose initiation has typically been linked to episodic processes such as avulsion, bend cutoff, and tectonics. The initiation of knickpoints in submarine channels has never been described, and questions remain about their evolution. Sedimentary and flow processes enabling the maintenance of such features in non-lithified substrates are also poorly documented. Repeated high-resolution multibeam bathymetry between 2012 and 2018 in the Capbreton submarine canyon (southeastern Bay of Biscay, offshore France) demonstrates that knickpoints can initiate autogenically at meander bends over annual to multi-annual time scales. Partial channel clogging at tight bends is shown to predate the development of new knickpoints. We describe this initiation process and show a detailed morphological evolution of knickpoints over time. The gradients of knickpoint headwalls are sustained and can grow over time as they migrate through headward erosion. This morphology, associated plunge pools, and/or development of enhanced downstream erosion are linked herein to the formation and maintenance of hydraulic jumps. These insights of autogenically driven, temporally high-frequency knickpoints reveal that cut-and-fill cycles with depths of multiple meters can be the norm in submarine systems.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4210
Author(s):  
Tae-Kyoung Kim

This paper considers a downlink cellular network where multi-antenna base stations (BSs) simultaneously serve their associated multi-antenna users. Each BS is distributed according to a homogeneous Poisson point process and uses zero-forcing beamforming for spatial division multiplexing with partial channel state information (CSI). During downlink transmission, each user combines the multiple antenna outputs and quantizes the CSI to feed back to its associated BS. Specifically, this paper focuses on antenna combining at the receiver. Conventional quantization-based combining (QBC) effectively reduces the quantization error; however, inter-cell interference in the cellular networks degrades the QBC gain. This degradation is analyzed using a spherical-cap approximation of vector quantization (SCVQ). From the SCVQ, the ergodic spectral efficiency and the optimal number of feedback bits are investigated, and it is shown that the QBC degrades the gain of the effective channel. To address this problem, an optimization solution is proposed that selects the antenna combining to maximize the spectral efficiency. The solution is also derived by considering the expected beamforming vectors of other cells. It is demonstrated by simulation that the proposed solution outperforms the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document