scholarly journals A Distributed Multifactorial Particle Swarm Optimization Approach

Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>

2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740073 ◽  
Author(s):  
Song Huang ◽  
Yan Wang ◽  
Zhicheng Ji

Multi-objective optimization problems (MOPs) need to be solved in real world recently. In this paper, a multi-objective particle swarm optimization based on Pareto set and aggregation approach was proposed to deal with MOPs. Firstly, velocities and positions were updated similar to PSO. Then, global-best set was defined in particle swarm optimizer to preserve Pareto-based set obtained by the population. Specifically, a hybrid updating strategy based on Pareto set and aggregation approach was introduced to update the global-best set and local search was carried on global-best set. Thirdly, personal-best positions were updated in decomposition way, and global-best position was selected from global-best set. Finally, ZDT instances and DTLZ instances were selected to evaluate the performance of MULPSO and the results show validity of the proposed algorithm for MOPs.


2020 ◽  
Author(s):  
Ahlem Aboud ◽  
Raja Fdhila ◽  
Amir Hussain ◽  
Adel Alimi

Distributed architecture-based Particle Swarm Optimization is very useful for static optimization and not yet explored to solve complex dynamic multi-objective optimization problems. This study proposes a novel Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm with two optimization levels. In the first level, all solutions are optimized in the same search space and the second level is based on a distributed architecture using the Pareto ranking operator for dynamic multi-swarm subdivision. The proposed approach adopts a dynamic handling strategy using a set of detectors to keep track of change in the objective function that is impacted by the problem’s time-varying parameters at each level. To ensure timely adaptation during the optimization process, a dynamic response strategy is considered for the reevaluation of all non-improved solutions, while the worst particles are replaced with a newly generated one. The convergence and<br>diversity performance of the DPb-MOPSO algorithm are proven through Friedman Analysis of Variance, and the Lyapunov theorem is used to prove stability analysis over the Inverted Generational Distance (IGD) and Hypervolume Difference (HVD) metrics. Compared to other evolutionary algorithms, the novel DPb-MOPSO is shown to be most robust for solving complex problems over a range of changes in both the Pareto Optimal Set and Pareto Optimal Front. <br>


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 146 ◽  
Author(s):  
Ying Sun ◽  
Yuelin Gao ◽  
Xudong Shi

It is generally known that the balance between convergence and diversity is a key issue for solving multi-objective optimization problems. Thus, a chaotic multi-objective particle swarm optimization approach incorporating clone immunity (CICMOPSO) is proposed in this paper. First, points in a non-dominated solution set are mapped to a parallel-cell coordinate system. Then, the status of the particles is evaluated by the Pareto entropy and difference entropy. At the same time, the algorithm parameters are adjusted by feedback information. At the late stage of the algorithm, the local-search ability of the particle swarm still needs to be improved. Logistic mapping and the neighboring immune operator are used to maintain and change the external archive. Experimental test results show that the convergence and diversity of the algorithm are improved.


2018 ◽  
Vol 232 ◽  
pp. 03039
Author(s):  
Taowei Chen ◽  
Yiming Yu ◽  
Kun Zhao

Particle swarm optimization(PSO) algorithm has been widely applied in solving multi-objective optimization problems(MOPs) since it was proposed. However, PSO algorithms updated the velocity of each particle using a single search strategy, which may be difficult to obtain approximate Pareto front for complex MOPs. In this paper, inspired by the theory of P system, a multi-objective particle swarm optimization (PSO) algorithm based on the framework of membrane system(PMOPSO) is proposed to solve MOPs. According to the hierarchical structure, objects and rules of P system, the PSO approach is used in elementary membranes to execute multiple search strategy. And non-dominated sorting and crowding distance is used in skin membrane for improving speed of convergence and maintaining population diversity by evolutionary rules. Compared with other multi-objective optimization algorithm including MOPSO, dMOPSO, SMPSO, MMOPSO, MOEA/D, SPEA2, PESA2, NSGAII on a benchmark series function, the experimental results indicate that the proposed algorithm is not only feasible and effective but also have a better convergence to true Pareto front.


2010 ◽  
Vol 18 (1) ◽  
pp. 127-156 ◽  
Author(s):  
Ahmed Elhossini ◽  
Shawki Areibi ◽  
Robert Dony

This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.


Sign in / Sign up

Export Citation Format

Share Document