scholarly journals Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 146 ◽  
Author(s):  
Ying Sun ◽  
Yuelin Gao ◽  
Xudong Shi

It is generally known that the balance between convergence and diversity is a key issue for solving multi-objective optimization problems. Thus, a chaotic multi-objective particle swarm optimization approach incorporating clone immunity (CICMOPSO) is proposed in this paper. First, points in a non-dominated solution set are mapped to a parallel-cell coordinate system. Then, the status of the particles is evaluated by the Pareto entropy and difference entropy. At the same time, the algorithm parameters are adjusted by feedback information. At the late stage of the algorithm, the local-search ability of the particle swarm still needs to be improved. Logistic mapping and the neighboring immune operator are used to maintain and change the external archive. Experimental test results show that the convergence and diversity of the algorithm are improved.

2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Konstantinos B. Baltzis

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm inspired by the social behavior of birds flocking and fish schooling. Numerous PSO variants have been proposed in the literature for addressing different problem types. In this chapter, the authors apply different PSO variants to common antenna and microwave design problems. The Inertia Weight PSO (IWPSO), the Constriction Factor PSO (CFPSO), and the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithms are applied to real-valued optimization problems. Correspondingly, discrete PSO optimizers such as the binary PSO (binPSO) and the Boolean PSO with velocity mutation (BPSO-vm) are used to solve discrete-valued optimization problems. In case of a multi-objective optimization problem, the authors apply two multi-objective PSO variants. Namely, these are the Multi-Objective PSO (MOPSO) and the Multi-Objective PSO with Fitness Sharing (MOPSO-fs) algorithms. The design examples presented here include microwave absorber design, linear array synthesis, patch antenna design, and dual-band base station antenna optimization. The conclusion and a discussion on future trends complete the chapter.


2018 ◽  
Vol 9 (4) ◽  
pp. 71-96 ◽  
Author(s):  
Swapnil Prakash Kapse ◽  
Shankar Krishnapillai

This article demonstrates the implementation of a novel local search approach based on Utopia point guided search, thus improving the exploration ability of multi- objective Particle Swarm Optimization. This strategy searches for best particles based on the criteria of seeking solutions closer to the Utopia point, thus improving the convergence to the Pareto-optimal front. The elite non-dominated selected particles are stored in an archive and updated at every iteration based on least crowding distance criteria. The leader is chosen among the candidates in the archive using the same guided search. From the simulation results based on many benchmark tests, the new algorithm gives better convergence and diversity when compared to existing several algorithms such as NSGA-II, CMOPSO, SMPSO, PSNS, DE+MOPSO and AMALGAM. Finally, the proposed algorithm is used to solve mechanical design based multi-objective optimization problems from the literature, where it shows the same advantages.


2012 ◽  
Vol 201-202 ◽  
pp. 283-286
Author(s):  
Chen Yang Chang ◽  
Jing Mei Zhai ◽  
Qin Xiang Xia ◽  
Bin Cai

Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.


Sign in / Sign up

Export Citation Format

Share Document