scholarly journals Cyclic Lattices, Ideal Lattices and Bounds for the Smoothing Parameter

Author(s):  
Zhiyong Zheng ◽  
fengxia liu ◽  
Yunfan Lu ◽  
Kun Tian

<div>Cyclic lattices and ideal lattices were introduced by Micciancio in \cite{D2}, Lyubashevsky and Micciancio in \cite{L1} respectively, which play an efficient role in Ajtai's construction of a collision resistant Hash function (see \cite{M1} and \cite{M2}) and in Gentry's construction of fully homomorphic encryption (see \cite{G}). Let $R=Z[x]/\langle \phi(x)\rangle$ be a quotient ring of the integer coefficients polynomials ring, Lyubashevsky and Micciancio regarded an ideal lattice as the correspondence of an ideal of $R$, but they neither explain how to extend this definition to whole Euclidean space $\mathbb{R}^n$, nor exhibit the relationship of cyclic lattices and ideal lattices.</div><div>In this paper, we regard the cyclic lattices and ideal lattices as the correspondences of finitely generated $R$-modules, so that we may show that ideal lattices are actually a special subclass of cyclic lattices, namely, cyclic integer lattices. In fact, there is a one to one correspondence between cyclic lattices in $\mathbb{R}^n$ and finitely generated $R$-modules (see Theorem \ref{th4} below). On the other hand, since $R$ is a Noether ring, each ideal of $R$ is a finitely generated $R$-module, so it is natural and reasonable to regard ideal lattices as a special subclass of cyclic lattices (see corollary \ref{co3.4} below). It is worth noting that we use more general rotation matrix here, so our definition and results on cyclic lattices and ideal lattices are more general forms. As application, we provide cyclic lattice with an explicit and countable upper bound for the smoothing parameter (see Theorem \ref{th5} below). It is an open problem that is the shortest vector problem on cyclic lattice NP-hard? (see \cite{D2}). Our results may be viewed as a substantial progress in this direction.</div>

2022 ◽  
Author(s):  
Zhiyong Zheng ◽  
fengxia liu ◽  
Yunfan Lu ◽  
Kun Tian

<div>Cyclic lattices and ideal lattices were introduced by Micciancio in \cite{D2}, Lyubashevsky and Micciancio in \cite{L1} respectively, which play an efficient role in Ajtai's construction of a collision resistant Hash function (see \cite{M1} and \cite{M2}) and in Gentry's construction of fully homomorphic encryption (see \cite{G}). Let $R=Z[x]/\langle \phi(x)\rangle$ be a quotient ring of the integer coefficients polynomials ring, Lyubashevsky and Micciancio regarded an ideal lattice as the correspondence of an ideal of $R$, but they neither explain how to extend this definition to whole Euclidean space $\mathbb{R}^n$, nor exhibit the relationship of cyclic lattices and ideal lattices.</div><div>In this paper, we regard the cyclic lattices and ideal lattices as the correspondences of finitely generated $R$-modules, so that we may show that ideal lattices are actually a special subclass of cyclic lattices, namely, cyclic integer lattices. In fact, there is a one to one correspondence between cyclic lattices in $\mathbb{R}^n$ and finitely generated $R$-modules (see Theorem \ref{th4} below). On the other hand, since $R$ is a Noether ring, each ideal of $R$ is a finitely generated $R$-module, so it is natural and reasonable to regard ideal lattices as a special subclass of cyclic lattices (see corollary \ref{co3.4} below). It is worth noting that we use more general rotation matrix here, so our definition and results on cyclic lattices and ideal lattices are more general forms. As application, we provide cyclic lattice with an explicit and countable upper bound for the smoothing parameter (see Theorem \ref{th5} below). It is an open problem that is the shortest vector problem on cyclic lattice NP-hard? (see \cite{D2}). Our results may be viewed as a substantial progress in this direction.</div>


1990 ◽  
Vol 33 (1) ◽  
pp. 79-83
Author(s):  
James K. Deveney ◽  
Joe Yanik

AbstractLet L be a finitely generated extension of a field k. L is a k-rational factor if there is a field extension K of k such that the total quotient ring of L ꕕk K is a rational (pure transcendental) extension of K. We present examples of non-rational rational factors and explicitly determine both factors.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850023 ◽  
Author(s):  
L. Izelgue ◽  
O. Ouzzaouit

Let [Formula: see text] and [Formula: see text] be two rings, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] be a ring homomorphism. The ring [Formula: see text] is called the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect to [Formula: see text]. It was proposed by D’anna and Fontana [Amalgamated algebras along an ideal, Commutative Algebra and Applications (W. de Gruyter Publisher, Berlin, 2009), pp. 155–172], as an extension for the Nagata’s idealization, which was originally introduced in [Nagata, Local Rings (Interscience, New York, 1962)]. In this paper, we establish necessary and sufficient conditions under which [Formula: see text], and some related constructions, is either a Hilbert ring, a [Formula: see text]-domain or a [Formula: see text]-ring in the sense of Adams [Rings with a finitely generated total quotient ring, Canad. Math. Bull. 17(1) (1974)]. By the way, we investigate the transfer of the [Formula: see text]-property among pairs of domains sharing an ideal. Our results provide original illustrating examples.


1974 ◽  
Vol 17 (1) ◽  
pp. 1-4 ◽  
Author(s):  
John Conway Adams

Let R be a commutative ring with non-zero identity and let K be the total quotient ring of R. We call R a G-ring if K is finitely generated as a ring over R. This generalizes Kaplansky′s definition of G-domain [5].Let Z(R) be the set of zero divisors in R. Following [7] elements of R—Z(R) and ideals of R containing at least one such element are called regular. Artin-Tate's characterization of Noetherian G-domains [1, Theorem 4] carries over with a slight adjustment to characterize a Noetherian G-ring as being semi-local in which every regular prime ideal has rank one.


2014 ◽  
Vol 8 (3) ◽  
Author(s):  
Masaya Yasuda ◽  
Kazuhiro Yokoyama ◽  
Takeshi Shimoyama ◽  
Jun Kogure ◽  
Takeshi Koshiba

AbstractIn this paper, we revisit the fully homomorphic encryption (FHE) scheme implemented by Gentry and Halevi, which is just an instantiation of Gentry's original scheme based on ideal lattices. Their FHE scheme starts from a somewhat homomorphic encryption (SHE) scheme, and its decryption range is deeply related with the FHE construction. Gentry and Halevi gave an experimental evaluation of the decryption range, but theoretical evaluations have not been given so far. Moreover, we give a theoretical upper bound, and reconsider suitable parameters for theoretically obtaining an FHE scheme. In particular, while Gentry and Halevi use the Euclidean norm evaluation in the noise management of ciphertexts, our theoretical bound enables us to use the ∞-norm evaluation, and hence it helps to lower the difficulty of controlling the noise density of ciphertexts.


1972 ◽  
Vol 46 ◽  
pp. 147-153
Author(s):  
Shizuo Endo

Let R be a commutative ring and K be the total quotient ring of R. Let Σ be a separable K-algebra which is a finitely generated projective, faithful K-module and Λ be an R-order in DΛ/R. We denote by DΛ/R the Dedekind different of Λ and by NΛ/R the Noetherian different of Λ.


2018 ◽  
Vol 17 (06) ◽  
pp. 1850112 ◽  
Author(s):  
Maria Francis ◽  
Ambedkar Dukkipati

In this paper, we draw connections between ideal lattices and multivariate polynomial rings over integers using Gröbner bases. Univariate ideal lattices are ideals in the residue class ring, [Formula: see text] (here [Formula: see text] is a monic polynomial) and cryptographic primitives have been built based on these objects. Ideal lattices in the univariate case are generalizations of cyclic lattices. We introduce the notion of multivariate cyclic lattices and show that ideal lattices are a generalization of them in the multivariate case too. Based on multivariate ideal lattices, we construct hash functions using Gröbner basis techniques. We define a worst case problem, shortest substitution problem with respect to an ideal in [Formula: see text], and use its computational hardness to establish the collision resistance of the hash functions.


2017 ◽  
Vol 13 (09) ◽  
pp. 2277-2297
Author(s):  
Scott C. Batson

The geometric embedding of an ideal in the algebraic integer ring of some number field is called an ideal lattice. Ideal lattices and the shortest vector problem (SVP) are at the core of many recent developments in lattice-based cryptography. We utilize the matrix of the linear transformation that relates two commonly used geometric embeddings to provide novel results concerning the equivalence of the SVP in these ideal lattices arising from rings of cyclotomic integers.


Sign in / Sign up

Export Citation Format

Share Document