scholarly journals AutoML for Log File Analysis (ALFA) in a Production Line System of Systems pointed towards Predictive Maintenance

2021 ◽  
Vol 13 (2) ◽  
pp. 76-84
Author(s):  
Matthias Maurer ◽  
Andreas Festl ◽  
Bor Bricelj ◽  
Germar Schneider ◽  
Michael Schmeja

Automated machine learning and predictive maintenance have both become prominent terms in recent years. Combining these two fields of research by conducting log analysis using automated machine learning techniques to fuel predictive maintenance algorithms holds multiple advantages, especially when applied in a production line setting. This approach can be used for multiple applications in the industry, e.g., in semiconductor, automotive, metal, and many other industrial applications to improve the maintenance and production costs and quality. In this paper, we investigate the possibility to create a predictive maintenance framework using only easily available log data based on a neural network framework for predictive maintenance tasks. We outline the advantages of the ALFA (AutoML for Log File Analysis) approach, which are high efficiency in combination with a low entry border for novices, among others. In a production line setting, one would also be able to cope with concept drift and even with data of a new quality in a gradual manner. In the presented production line context, we also show the superior performance of multiple neural networks over a comprehensive neural network in practice. The proposed software architecture allows not only for the automated adaption to concept drift and even data of new quality but also gives access to the current performance of the used neural networks.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.



Author(s):  
Joseph D. Romano ◽  
Trang T. Le ◽  
Weixuan Fu ◽  
Jason H. Moore

AbstractAutomated machine learning (AutoML) and artificial neural networks (ANNs) have revolutionized the field of artificial intelligence by yielding incredibly high-performing models to solve a myriad of inductive learning tasks. In spite of their successes, little guidance exists on when to use one versus the other. Furthermore, relatively few tools exist that allow the integration of both AutoML and ANNs in the same analysis to yield results combining both of their strengths. Here, we present TPOT-NN—a new extension to the tree-based AutoML software TPOT—and use it to explore the behavior of automated machine learning augmented with neural network estimators (AutoML+NN), particularly when compared to non-NN AutoML in the context of simple binary classification on a number of public benchmark datasets. Our observations suggest that TPOT-NN is an effective tool that achieves greater classification accuracy than standard tree-based AutoML on some datasets, with no loss in accuracy on others. We also provide preliminary guidelines for performing AutoML+NN analyses, and recommend possible future directions for AutoML+NN methods research, especially in the context of TPOT.



Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.



2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.



2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.



2021 ◽  
Author(s):  
Ruslan Chernyshev ◽  
Mikhail Krinitskiy ◽  
Viktor Stepanenko

<p>This work is devoted to development of neural networks for identification of partial differential equations (PDE) solved in the land surface scheme of INM RAS Earth System model (ESM). Atmospheric and climate models are in the top of the most demanding for supercomputing resources among research applications. Spatial resolution and a multitude of physical parameterizations used in ESMs continuously increase. Most of parameters are still poorly constrained, many of them cannot be measured directly. To optimize model calibration time, using neural networks looks a promising approach. Neural networks are already in wide use in satellite imaginary (Su Jeong Lee, et al, 2015; Krinitskiy M. et al, 2018) and for calibrating parameters of land surface models (Yohei Sawada el al, 2019). Neural networks have demonstrated high efficiency in solving conventional problems of mathematical physics (Lucie P. Aarts el al, 2001; Raissi M. et al, 2020). </p><p>We develop a neural networks for optimizing parameters of nonlinear soil heat and moisture transport equation set. For developing we used Python3 based programming tools implemented on GPUs and Ascend platform, provided by Huawei. Because of using hybrid approach combining neural network and classical thermodynamic equations, the major purpose was finding the way to correctly calculate backpropagation gradient of error function, because model trains and is being validated on the same temperature data, while model output is heat equation parameter, which is typically not known. Neural network model has been runtime trained using reference thermodynamic model calculation with prescribed parameters, every next thermodynamic model step has been used for fitting the neural network until it reaches the loss function tolerance.</p><p>Literature:</p><p>1.     Aarts, L.P., van der Veer, P. “Neural Network Method for Solving Partial Differential Equations”. Neural Processing Letters 14, 261–271 (2001). https://doi.org/10.1023/A:1012784129883</p><p>2.     Raissi, M., P. Perdikaris and G. Karniadakis. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv abs/1711.10561 (2017): n. pag.</p><p>3.     Lee, S.J., Ahn, MH. & Lee, Y. Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager. Adv. Atmos. Sci. 33, 221–232 (2016). https://doi.org/10.1007/s00376-015-5084-9</p><p>4.     Krinitskiy M, Verezemskaya P, Grashchenkov K, Tilinina N, Gulev S, Lazzara M. Deep Convolutional Neural Networks Capabilities for Binary Classification of Polar Mesocyclones in Satellite Mosaics. Atmosphere. 2018; 9(11):426.</p><p>5.     Sawada, Y.. “Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model.” ArXiv abs/1909.04196 (2019): n. pag.</p><p>6.     Shufen Pan et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci., 24, 1485–1509 (2020)</p><p>7.     Chaney, Nathaniel & Herman, Jonathan & Ek, M. & Wood, Eric. (2016). Deriving Global Parameter Estimates for the Noah Land Surface Model using FLUXNET and Machine Learning: Improving Noah LSM Parameters. Journal of Geophysical Research: Atmospheres. 121. 10.1002/2016JD024821.</p><p> </p><p> </p>



Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.



2022 ◽  
pp. 1-30
Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.



2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.



Author(s):  
Douglas Macedo Sgrott ◽  
Fabricio Moreira Cerqueira ◽  
Fabiano J. F. Miranda ◽  
José F. S. Filho ◽  
Rafael S. Parpinelli


Sign in / Sign up

Export Citation Format

Share Document