Exploring competitiveness and wellbeing in Italy by spatial principal component analysis

2021 ◽  
pp. 141-146
Author(s):  
Carlo Cusatelli ◽  
Massimiliano Giacalone ◽  
Eugenia Nissi

Well being is a multidimensional phenomenon, that cannot be measured by a single descriptive indicator and that, it should be represented by multiple dimensions. It requires, to be measured by combination of different dimensions that can be considered together as components of the phenomenon. This combination can be obtained by applying methodologies knows as Composite Indicators (CIs). CIs are largely used to have a comprehensive view on a phenomenon that cannot be captured by a single indicator. Principal Component Analysis (PCA) is one of the most popular multivariate statistical technique used for reducing data with many dimension, and often well being indicators are obtained using PCA. PCA is implicitly based on a reflective measurement model that it non suitable for all types of indicators. Mazziotta and Pareto (2013) in their paper discuss the use and misuse of PCA for measuring well-being. The classical PCA is not suitable for data collected on the territory because it does not take into account the spatial autocorrelation present in the data. The aim of this paper is to propose the use of Spatial Principal Component Analysis for measuring well being in the Italian Provinces.

2004 ◽  
Vol 4 (3) ◽  
pp. 169-182 ◽  
Author(s):  
C.V. Palau ◽  
F. Arregui ◽  
A. Ferrer

The amount of data collected by the SCADA (supervisory control and data acquisition) of an urban water supply system is sometimes difficult to process. A multivariate statistical technique, Principal Component Analysis (PCA) is presented in this paper, which processes this data, simplifying and synthesizing the most significant information. This technique extracts new variables, principal components (PC), that explain the behaviour of injected flow. Multivariate control charts to detect outliers show higher sensitivity than those generated with traditional univariate statistical methods.


2018 ◽  
Vol 66 (8) ◽  
pp. 665-679
Author(s):  
Hassan Enam Al Mawla ◽  
Andreas Kroll

Abstract The formation of foam in amine units is an issue that plant operators and field personnel are confronted with on a regular basis. The inability to take proper actions in due time may result in plant downtime and increased emissions. Steep rises in differential pressure indicate foam formation, and are monitored manually in practice. Antifoaming agent is added in order to reduce foaming, but this is usually carried out under time pressure. Hence, plant operating authorities have expressed a strong interest in a data-driven solution capable of providing an early warning against foaming. The classical univariate alarm associated with differential pressure can be ineffective for foaming detection due to high misdetection rates and its lateness of detection. Modern univariate approaches based on pattern recognition techniques may not be suitable either for an early detection, as no universally distinctive features of differential pressure are observed prior to foaming in the present study. In this contribution, the multivariate statistical process monitoring approach based on principal component analysis (PCA) is applied to the early detection of foaming in a continuously operated Shell Claus Off-gas Treating (SCOT) unit of a major refinery in Germany. The results are extended to facilitate fully automated and adaptive modeling based on exponentially weighted recursive principal component analysis (EWRPCA).


2016 ◽  
Vol 2 (4) ◽  
pp. 211
Author(s):  
Girdhari Lal Chaurasia ◽  
Mahesh Kumar Gupta ◽  
Praveen Kumar Tandon

Water is an essential resource for all the organisms, plants and animals including the human beings. It is the backbone for agricultural and industrial sectors and all the small business units. Increase in human population and economic activities have tremendously increased the demand for large-scale suppliers of fresh water for various competing end users.The quality evaluation of water is represented in terms of physical, chemical and Biological parameters. A particular problem in the case of water quality monitoring is the complexity associated with analyzing the large number of measured variables. The data sets contain rich information about the behavior of the water resources. Multivariate statistical approaches allow deriving hidden information from the data sets about the possible influences of the environment on water quality. Classification, modeling and interpretation of monitored data are the most important steps in the assessment of water quality. The application of different multivariate statistical techniques, such as cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) help to identify important components or factors accounting for most of the variances of a system. In the present study water samples were analyzed for various physicochemical analyses by different methods following the standards of APHA, BIS and WHO and were subjected to further statistical analysis viz. the cluster analysis to understand the similarity and differences among the various sampling stations.  Three clusters were found. Cluster 1 was marked with 3 sampling locations 1, 3 & 5; Cluster-2 was marked with sampling location-2 and cluster-3 was marked with sampling location-4. Principal component analysis/factor analysis is a pattern reorganization technique which is used to assess the correlation between the observations in terms of different factors which are not observable. Observations correlated either positively or negatively, are likely to be affected by the same factors while the observations which are not correlated are influenced by different factors. In our study three factors explained 99.827% of variances. F1 marked  51.619% of total variances, high positive strong loading with TSS, TS, Temp, TDS, phosphate and moderate with electrical conductivity with loading values of 0.986, 0.970, 0.792, 0.744, 0.695,  0.701, respectively. Factor 2 marked 27.236% of the total variance with moderate positive loading with total alkalinity & temp. with loading values 0.723 & 0.606 respectively. It also explained the moderate negative loading with conductivity, TDS, and chloride with loading values -0.698, -0.690, -0.582. Factor F 3 marked 20.972 % of the variances with positive loading with PH, chloride, and phosphate with strong loading of pH 0.872 and moderate positive loading with chloride and phosphate with loading values 0.721, and 0.569 respectively. 


1969 ◽  
Vol 5 (1) ◽  
pp. 67-77 ◽  
Author(s):  
S. C. Pearce

SUMMARYMultivariate statistical methods are used increasingly in biological research to investigate the responses of organisms considered as a whole, whereas established statistical methods are usually concerned with measured characteristics considered one at a time. Multivariate techniques are mostly explained in terms of matrix algebra, which is a way of dealing with groups of numbers rather than individual ones. A brief description is given of some elementary results of matrix algebra and a method is presented whereby hypotheses can be generated about interrelations within an organism. Two techniques, principal component analysis and canonical analysis, are described in greater detail. It is emphasized that hypotheses need to be tested even though they have been generated by objective statistical means.


Sign in / Sign up

Export Citation Format

Share Document