foam formation
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 68)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 3 ◽  
Author(s):  
Tiina Nypelö ◽  
Jessica Fredriksson ◽  
Vishnu Arumughan ◽  
Emanuel Larsson ◽  
Stephen A. Hall ◽  
...  

Foaming of most bio-based polymers is challenged by low pore formation and foam stability. At the same time, the developing utilization of bio-based materials for the circular economy is placing new demands for easily processable, low-density materials from renewable raw materials. In this work, we investigate cellulose nanofiber (CNF) foams in which foaming is facilitated with wood-based hemicelluloses, galactoglucomannans (GGMs). Interfacial activity of the GGM is modulated via modification of the molecule’s amphiphilicity, where the surface tension is decreased from approximately 70 to 30 mN m−1 for unmodified and modified GGM, respectively. The chemical modification of GGMs by substitution with butyl glycidyl ether increased the molecule’s hydrophobicity and interaction with the nanocellulose component. The highest specific foam volume using 1 wt% CNF was achieved when modified GGM was added (3.1 ml g−1), compared to unmodified GGM with CNF (2.1 ml g−1). An amount of 96 and 98% of the GGM and GGM-BGE foams were lost after 15 min of foaming while the GGM and GGM-BGE with cellulose nanofibers lost only 33 and 28% of the foam respectively. In the case of GGM-BGE, the foam stability increased with increasing nanofiber concentration. This suggests that the altered hydrophobicity facilitated increased foam formation when the additive was incorporated in the CNF suspension and foamed with nitrous oxide (N2O). Thus, the hydrophobic character of the modified GGM was a necessity for foam formation and stability while the CNFs were needed for generating a self-standing foam structure.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6363
Author(s):  
Aleksandra Grząbka-Zasadzińska ◽  
Przemysław Bartczak ◽  
Sławomir Borysiak

In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites—if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.


Eng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 356-371
Author(s):  
Julian Thünnesen ◽  
Bernhard Gatternig ◽  
Antonio Delgado

Non-carbonated fruit juices often tend to foam over during bottling. The resulting foam height corresponds to the equilibrium of foam formation and decay. Therefore, the foam unexpectedly occupies more space in the bottle and carries parts of the juice out of the bottle, resulting in product loss under filled containers and hygienic problems in the plant. Chemical antifoams are likewise undesirable in most cases. Recent ultrasonic defoamers are effective but only capable outside the container and after the filling. In this article, a lateral ultrasonication through the bottle wall with frequencies between 42 and 168 kHz is used in-line for non-invasive foam prevention during filling. Foam formation during hot bottling of orange juice, apple juice, and currant nectar at 70 °C happens at flow rates between 124–148 mL/s. The comparably high frequencies have a particular influence on the fresh foams, where a large fraction of small resonant bubbles is still present. Foam volume reductions of up to 50% are reached in these experiments. A low power of 15 W was sufficient for changing the rise of entrained bubbles and minimizing the foam development from the start. The half-life of the remaining foam could be reduced by up to 45% from the reference case. The main observed effects were a changed rise of entrained bubbles and an increased drainage.


2021 ◽  
Vol 11 (4-S) ◽  
pp. 127-130
Author(s):  
Teja Sri Meduri ◽  
Lakshmi Divya Munnangi ◽  
Sreevani Potharaju ◽  
Sri Tejaswi Suravarapu ◽  
Vasavi Rama Deepthi Swami ◽  
...  

Now-a-days, the most occurring problem is hair fall, so the main aim of the study is to reduce hair fall and promote hair growth. The main ingredient in this study is fermented rice water (Oryza sativa) which contains many antioxidants when compared to the plain rice water. Inositol is the major constituent which helps in decreasing hair fall.  The herbal shampoo was formulated using some of the traditional herbs like Hibiscus-rosa-sinensis, Phyllanthus emblica, Aloe vera, Trigonella foenum graceum along with fermented rice water in different concentrations and evaluated for various parameters. The prepared herbal shampoo was evaluated with physico-chemical parameters like pH, foam formation, dirt dispersion, surface tension, viscosity and wetting test. The results states that the herbal shampoo possess the following characteristics such as good foam ability, good cleansing, low surface tension, viscosity and soothing property. The evaluation results of the herbal shampoo had shown better results, which is ideal to use, safe and effective in the treatment of hair fall. Keywords: Herbal shampoo, Oryza sativa, Hair fall.


Author(s):  
Sharaf U Nisa ◽  
Sunil Pandey ◽  
PM Pandey

Closed-cell porous aluminum is expected to be a prominent material in near future because of its light weight, high specific modulus of elasticity, high energy absorption efficiency and high sound-insulating capacity in the automotive and aerospace industries. Recently, a new method of foaming has been developed in which a precursor is formed using friction stir processing. In the friction stir processing route, a precursor is fabricated by embedding a mixture of blowing agent powder and stabilization agent powder into aluminum alloy plates by the significant stirring action of friction stir processing. By applying the friction stir processing route precursor method, the cost-effective Al-foam formation along with high productivity can be accomplished. In this study, titanium hydride powder has been used as the blowing agent as it is reported to be most compatible with aluminum matrix. The effect of percentage of stabilization agent, i.e. alumina powder on porosity of aluminum foams formed using friction stir processing route is analyzed. The porous aluminum formed with three different percentages of alumina is observed and their porosity is calculated. Also, the compressive performance of the obtained samples is observed in order to examine the alumina powder addition on mechanical properties of the obtained metal foam. This study aims at analyzing the significance of addition of the alumina into the blowing agent while developing the metal foam through friction stir processing route.


2021 ◽  
Author(s):  
Ebrahim Shirani ◽  
Sima Nasirzade ◽  
Fethi Aloui

Abstract The purpose of this study is to analyze the flow of wet foam and to study the effect of volume fraction, velocity and surface tension and other physical parameters on the foam flow. The most numerical researches done in this area are for single-phase flows. The numerical simulation in this study is the first simulation in the foam flow, in which both the bubbles and the water are simulated as two-phase flow. In this study, fluid containing a surfactant and bubbles are flowing in a duct. The dimensions of the duct cross section is 15 × 60 in millimeters. The numerical solution is performed for three Reynolds numbers of 50, 100 and 1000, three volume fractions of 48, 41 and 28, and three Weber numbers of 0.405, 0.27 and 0.203 (27 different modes), and the effect of the above parameters on the flow behavior and its physical properties have been investigated. It was found that in foam flow, the velocity fluctuations, due to the movement of bubbles in the flow, is in the order of magnitude of the mean velocity. The same is true for wall shear stress. By increasing the Reynolds number, the pressure loss increases, the magnitude of the velocity fluctuations decreases and the frequency of the velocity fluctuations increases. By increasing the Weber number, the pressure loss and the magnitude of the velocity fluctuations decrease and the mean shear stress increases. By increasing the foam quality, pressure loss increases, the mean shear stress and the magnitude of the velocity fluctuations decrease and its frequency increases. And the phenomenon of coalescence causes a sudden increase in momentum speed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edward D. Kerr ◽  
Christopher H. Caboche ◽  
Cassandra L. Pegg ◽  
Toan K. Phung ◽  
Claudia Gonzalez Viejo ◽  
...  

AbstractBeer is one of the most popular beverages worldwide. As a product of variable agricultural ingredients and processes, beer has high molecular complexity. We used DIA/SWATH-MS to investigate the proteomic complexity and diversity of 23 commercial Australian beers. While the overall complexity of the beer proteome was modest, with contributions from barley and yeast proteins, we uncovered a very high diversity of post-translational modifications (PTMs), especially proteolysis, glycation, and glycosylation. Proteolysis was widespread throughout barley proteins, but showed clear site-specificity. Oligohexose modifications were common on lysines in barley proteins, consistent with glycation by maltooligosaccharides released from starch during malting or mashing. O-glycosylation consistent with oligomannose was abundant on secreted yeast glycoproteins. We developed and used data analysis pipelines to efficiently extract and quantify site-specific PTMs from SWATH-MS data, and showed incorporating these features into proteomic analyses extended analytical precision. We found that the key differentiator of the beer glyco/proteome was the brewery, with beer from independent breweries having a distinct profile to beer from multinational breweries. Within a given brewery, beer styles also had distinct glyco/proteomes. Targeting our analyses to beers from a single brewery, Newstead Brewing Co., allowed us to identify beer style-specific features of the glyco/proteome. Specifically, we found that proteins in darker beers tended to have low glycation and high proteolysis. Finally, we objectively quantified features of foam formation and stability, and showed that these quality properties correlated with the concentration of abundant surface-active proteins from barley and yeast.


Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


Sign in / Sign up

Export Citation Format

Share Document