scholarly journals Impossible interview with William Thomson - Lord Kelvin

2020 ◽  
Author(s):  
Franco Bagnoli
Keyword(s):  
1963 ◽  
Vol 1 (3) ◽  
pp. 251-263 ◽  
Author(s):  
R. C. Olby

Darwin only published one account of his provisional hypothesis of pangenesis, and that is to be found in chapter xxvii of his book The Variation of Animals and Plants under Domestication, the first edition of which is dated 1868. The absence of any earlier account in Darwin's works has led some to assume that he had recourse to this hypothesis only a short time before the published date of the book containing it, and on the basis of this assumption they have asserted that he produced it as a part of his defence of the theory of evolution against the criticisms made of it by the physicists Sir William Thomson, afterwards Lord Kelvin, and Fleeming Jenkin. But to make such an assertion is to ignore the fact that Darwin had already sent his manuscript of pangenesis to Huxley in the year 1865, two years before Fleeming Jenkin's article appeared and three years before Lord Kelvin openly attacked the evolutionary theory. The discovery of this manuscript of pangenesis has, therefore, some importance, for it should reveal Darwin's conception of pangenesis in 1865.


2019 ◽  
pp. 97-110
Author(s):  
Matthew Stanley

Today the laws of physics are often seen as evidence for a naturalistic worldview. However, historically, physics was usually considered compatible with belief in God. Foundations of physics such as thermodynamics, uniformity of nature, and causality were seen as religiously based by physicists such as James Clerk Maxwell and William Thomson, Lord Kelvin. These were usually interpreted as evidence of design by a creative deity. In the late nineteenth century, John Tyndall and other scientific naturalists made the argument that these foundations were more sympathetic to a non-religious understanding of the natural world. With the success of this approach, twentieth-century religious physicists tended to stress non-material and experiential connections rather than looking for evidence of design. Later parts of that century saw a revival of natural theological arguments in the form of the anthropic principle and the fine-tuning problem. While modern physics is naturalistic, this was not inevitable and there were several alternative approaches common in earlier times.


2020 ◽  
pp. 109-140
Author(s):  
Brian Cantor

The external surface of a material has an atomic or molecular structure that is different from the bulk material. So does any internal interface within a material. Because of this, the energy of a material or any grain or particle within it increases with the curvature of its bounding surface, as described by the Gibbs-Thomson equation. This chapter explains how surfaces control the nucleation of new phases during reactions such as solidification and precipitation, the coarsening and growth of particles during heat treatment, the equilibrium shape of crystals, and the surface adsorption and segregation of solutes and impurities. The Gibbs-Thomson was predated by a number of related equations; it is not clear whether it is named after J. J. Thomson or William Thomson (Lord Kelvin); and it was not put into its current usual form until after Gibbs’, Thomson’s and Kelvin’s time. J. J. Thomson was the third Cavendish Professor of Physics at Cambridge University. He discovered the electron, which had a profound impact on the world, notably via Thomas Edison’s invention of the light bulb, and subsequent building of the world’s first electricity distribution network. William Thomson was Professor of Natural Philosophy at Glasgow University. He made major scientific developments, notably in thermodynamics, and he helped build the first trans-Atlantic undersea telegraph. Because of his scientific pre-eminence, the absolute unit of temperature, the degree Kelvin, is named after him.


2004 ◽  
Vol 26 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Matthew Trainer
Keyword(s):  

2013 ◽  
Vol 4 (2) ◽  
pp. 83-95 ◽  
Author(s):  
K. L. Aplin ◽  
R. G. Harrison

Abstract. Lord Kelvin (William Thomson) made important contributions to the study of atmospheric electricity during a brief but productive period from 1859–1861. By 1859 Kelvin had recognised the need for "incessant recording" of atmospheric electrical parameters, and responded by inventing both the water dropper equaliser for measuring the atmospheric potential gradient (PG), and photographic data logging. The water dropper equaliser was widely adopted internationally and is still in use today. Following theoretical considerations of electric field distortion by local topography, Kelvin developed a portable electrometer, using it to investigate the PG on the Scottish island of Arran. During these environmental measurements, Kelvin may have unwittingly detected atmospheric PG changes during solar activity in August/September 1859 associated with the "Carrington event", which is interesting in the context of his later statements that solar magnetic influence on the Earth was impossible. Kelvin's atmospheric electricity work presents an early representative study in quantitative environmental physics, through the application of mathematical principles to an environmental problem, the design and construction of bespoke instrumentation for real world measurements and recognising the limitations of the original theoretical view revealed by experimental work.


Author(s):  
Henk W. de Regt

This chapter analyzes the role of mechanical modeling in nineteenth-century physics, showing how precisely mechanical models were used to enhance scientific understanding. It discusses the work and ideas of William Thomson (Lord Kelvin), James Clerk Maxwell, and Ludwig Boltzmann, who advanced explicit views on the function and status of mechanical models, in particular, on their role in providing understanding. A case study of the construction of molecular models to explain the so-called specific heat anomaly highlights the role of conceptual tools in achieving understanding and shows that intelligibility is an epistemically relevant feature of mechanical models. Next, the chapter examines Boltzmann’s Bildtheorie, an interpretation of mechanical models that he developed in response to problems and criticisms of the program of mechanical explanation, and his associated pragmatic conception of understanding. The final section discusses the limitations of mechanical models and Ernst Mach’s criticism of the mechanical program.


1972 ◽  
Vol 25 (1) ◽  
pp. 91-98
Author(s):  
Charles H. Cotter

The year 1971 marked the first centenary of the publication of a paper on navigation which appeared in the Proceedings of the Royal Society of London in which the author, Sir William Thomson (later Lord Kelvin) described a new method of determining an astronomical position line. The method was impracticable and was not, therefore, adopted by practical seamen. Nevertheless, its design is ingenious and interesting, and an investigation of its principles adds lustre to the genius of its inventor—reputedly one of the most eminent philosophers of the nineteenth century. Although the method failed in the eyes of the mariners for whom it was intended, Thomson sparked off an interest in short-method tables which has persisted even to the present day.


Sign in / Sign up

Export Citation Format

Share Document