scholarly journals Geo-Electrical Survey for Assessing Aquifer Characteristics and Groundwater Potential in Eshtehard Plain, Iran

2019 ◽  
Vol 14 (3) ◽  
pp. 982-992 ◽  
Author(s):  
Leila Khodapanah ◽  
Alireza Dizaji ◽  
Nasrin Khodapanah ◽  
Masoud Saatsaz
2016 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Chika Osele ◽  
Ajana Onwuemesi ◽  
Emmanuel Anakwuba ◽  
Augustine Chinwuko

<p>Surface geo-electrical survey using vertical electrical sounding (VES) method has been carried out in Onitsha and environs in southwestern part of Anambra state in order to determine the aquifer characteristics and groundwater potential of the area. Eleven vertical electrical soundings were carried out within the area of study using schlumberger array configuration. The interpretation of the vertical electrical sounding (VES) data revealed three to five geoelectric units with depth to the aquiferous layers ranging from 21 to 78m and resistivity of the saturated layers varying between 20 and 5600 ohm-m. Aquifer characteristics such as transmissivity and hydraulic conductivity calculated from interpretated VES result ranged from 2.55m2/day to 29.01m2/day and 0.03m/day to 1.37m/day respectively. This result shows that the water saturated sandstone units of the study area is hydrological good and capable of producing optimum groundwater yield. Furthermore, borehole could be drilled at depth between 40 and 110m in the area for sustainable water supply and hydrochemical study carried out to determine the water quality for domestics and municipal purposes.</p>


1998 ◽  
Vol 18 ◽  
Author(s):  
Moti Bahadur Kunwor

For the study of groundwater potential in any area, it is necessary to determine aquifer parameters as correctly as possible. The most effectively and popularly used tools in the field by groundwater geologists and engineers till today is old conventional curve techniques. A new approach is given to refine the aquifer characteristics by computer-assisted numerical techniques. The computer-assisted techniques were used in the Bheri Terai area (Banke/Bardiya), mid western Nepal with an objective of studying the aquifer parameters more accurately with reference to the prevailing hydrogeological condition. Keeping in view of the nature and types of aquifer, an optimisation based model developed by Jageshwar (1985) has been adopted for estimation of aquifer parameters. The aquifer parameters in the study area have been evaluated by using both curve procedure and computer assisted numerical techniques. Parameters are optimised by minimisation of sum of the square of residues between computed and observed drawdown. The starting values of parameter for optimisation were generally assigned as per the available graphical procedures. The applicability of the model to the field data has been demonstrated by using the existing test pumping data of Bheri Terai area (GWRDB, 1979). The purposed model for the analysis of test pumping data yields significantly better reproduction of time drawdowns. The results of analysis of test pumping data indicate confined and leaky confined nature of deep aquifer. Majority of leaky aquifers show a declining nature of piezometric head in the overlying aquifer while, some of the confined aquifer shows finite nature in areal extent due to the presence of barrier boundary (most probably impervious clay?).


2010 ◽  
Vol 2 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Sudip Dey ◽  
Chandrani Debbarma ◽  
Prasamita Sarkar ◽  
Sushmita Paul

Baromura hill of Tripura is characterised by complex geology and very rugged landform. Water scarcity is a very general problem for the remote hilly villages of this area. Thus groundwater is considered as one of the most valuable natural resources in hilly villages of Baromura hill. The present study aims to prepare small area survey based geo-electrical mapping for understanding groundwater condition in some selected pockets of the study area. For that purpose one hill slope and one trough shaped low land (locally known as lunga) was selected. Soil resistivity meter was used for electrical survey. A circle plot was prepared for geo-electrical survey on the basis of which geo-electrical maps were drawn. In the studied hill slope morphology four sectors of ground water conditions were observed according to their electrical resistivity character namely shallowest zone, medium zone, deep zone and very deep zone. The trough shaped low land (lunga) is characterised by comparatively shallower condition of groundwater and it was divided into five classes namely near surface water, very shallow zone, shallow zone, medium shallow zone and medium zone. Though the depth of the water bearing strata cannot be detected by this method it is very suitable for understanding the groundwater potential zones in remote places like present study area.


2021 ◽  
Vol 19 (1) ◽  
pp. 93-104
Author(s):  
Anthony A. Ugbaja ◽  
God'swill A. William ◽  
Uduak A. Ugbaja

Vertical Electrical Sounding (VES) and pumping test (constant discharge and recovery test) was carried out in parts of Boki Local Government Area to evaluate the groundwater potential, using aquifer characteristics of the study area. Sixteen (16) VES point was employed for this study using the Schlumberger array, with a maximum spread of 400- 600m. The stimulated result from the field data shows 3-5 layers resistivity model with the following curve types A, AK, KH, KHA, QH, QHA and QHK. The geoelectric properties include resistivity of the various layers ranging from 33.58 - 2.29 x 105Ώm, thickness from 0.2 - 50.2m, depth to basement varies from 2.99 - 74.60m across the study area. The litho logs show a top layer comprising of laterite, gravel/gravelly sand and intercalations of siltstones, the layers underneath are made-up of clay, weathered basement containing migmatites and gneisses, fractured and unfractured basement are made up of granitic and metamorphic rocks. The weathered and fractured layers constitute the aquiferous layers in the study area. Hydraulic parameters show transmissivity (T) range of 4.1x 10-5 - 1.92 x 10-1 m 2/day, specific capacity (SC) ranges from 2.09-21.42m2 /day, hydraulic conductivity (K) varies from 2.6 x 10-5 - 3.0 x10-3m/day and mean static water level (SWL) of 7.39m. Iso resistivity map of saprolite, fractured basement map, isopach map and the transmissivity map show that the studied area falls within the low-moderate groundwater potential zone.


Author(s):  
Champak Babu Silwal ◽  
Dinesh Pathak

Due to global increase in human population, the groundwater has been extensively used to meet the water demand for domestic as well as agricultural purpose. The number of deep and shallow wells has increased exponentially. For these purpose the groundwater potential area has to be delineated so as to delineate the area for intervention for groundwater abstraction. The determination of groundwater potential with the aquifer characteristics is not always possible due to unavailability of secondary data and from financial aspect. The delineation of groundwater potential with the integration of GIS and Remote Sensing (RS) as well as with the aid of geophysical data could be an effective approach. Groundwater delineation in mountainous region uses different hydrogeologic parameters like rainfall, slope, elevation, drainage density, lineament density, lithology/geology, land use/land cover (LULC), soil, etc., whereas in case of alluvial basins, parameters like aquifer material, soil, LULC, water table, specific yield, storage coefficient, transmissivity, etc. are used. The assignment of weight for the factors and rank for their classes are important steps in the Groundwater Potential Mapping (GPM) using GIS overlay. The weights for the different parameters have to be assigned as per their role in groundwater occurrences. Different methods like Analytical Hierarchy Process (AHP), expert’s knowledge, probability weight approach,  bivariate analysis, etc. have been used for assigning weights and ranks and the predicted potential need to be validated. Generally in mountainous aquifer, spring inventory forms the basic data for the verification. In addition, the aquifer characteristics like water table, yield, transmissivity can be used for the validation in flat lands. This method of delineation of groundwater potential is found to be appropriate with acceptable accuracy. Globally, there is increasing trend in the use of GIS and Remote Sensing for the identification of groundwater potential in recent time. Bulletin of Department of Geology, vol. 20-21, 2018, pp: 7-20


2021 ◽  
Author(s):  
Anthony Nuonum Ugbaja

Abstract Vertical Electrical Sounding (VES) and pumping test (constant discharge and recovery test) was carried out in parts of Boki Local Government Area to evaluate the groundwater potential, using aquifer characteristics of the study area. Sixteen (16) VES point was employed for this study using the Schlumberger array, with a maximum spread of 400-600m. The stimulated result from the field data shows 3-5 layers resistivity model with the following curve types A, AK, KH, KHA, QH, QHA and QHK. The geoelectric properties include resistivity of the various layers ranging from 33.58 - 2.29 x 105Ώm, thickness from 0.2 - 50.2m, depth to basement varies from 2.99 - 74.60m across the study area. The litho logs show a top layer comprising of laterite, gravel/gravelly sand and siltstone intercalations and the layers underneath are made-up of clay, weathered basement containing migmatites and gneisses, fractured and unfractured basement are made up of granitic and metamorphic rocks. The weathered and fractured layers constitute the aquiferous layers in the study area. Hydraulic parameters were estimated from 16 pumped wells and results show transmissivity (T) range of 4.1x 10-5 - 1.92 x 10-1 m 2 /day, specific capacity (SC) ranges from 2.09-21.42m2 /day, hydraulic conductivity (K) varies from 2.6 x 10-5 - 3.0 x 10-3m/day and mean static water level (SWL) of 7.39m . Iso resistivity map of saprolite, fractured basement map, isopach map and the transmissivity map show that the studied area falls within the low-moderate groundwater potential zone.


Waterlines ◽  
2001 ◽  
Vol 20 (2) ◽  
pp. 2-2
Author(s):  
Richard Carter ◽  
Sean Tyrrel

Sign in / Sign up

Export Citation Format

Share Document