groundwater condition
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 14)

H-INDEX

3
(FIVE YEARS 0)

Warta Geologi ◽  
2021 ◽  
Vol 47 (3) ◽  
pp. 199-203
Author(s):  
Nik Adib Yaaziz ◽  
◽  
Mohd Hariri Arifin ◽  

Geophysics play a vital role in the constructions of any major manmade structures in the world. One of those being the tunnels. In depth understanding of geophysical methods and a lot of information are needed in order to design a tunnel construction project. Comprehensive investigation on the ground condition has to be done before the field preparation study that will determine the stand-up time and the groundwater condition that may disrupt the tunnel construction. For tunnel stability assessment, an integration of geophysical methods is a must in order to obtain the most accurate results. Satellite imaging interpretation emphasizes on the structural tracing of negative lineament while field mapping emphasizes on location of underground seepage and major tectonic structures such as faults, joints and shear zones. Geoelectrical resistivity tomography survey is able to identify the differences in resistivity of Earth’s materials based on the water content inside of them. The best course of remediation could only be chosen once the output from all these studies are made available.


2021 ◽  
Vol 25 (3) ◽  
pp. 353-362
Author(s):  
Vahid Habibi ◽  
Hassan Ahmadi ◽  
Mohammad Jaffari ◽  
Abolfazl Moeini

In this study, three models were used to monitor and predict the GWL and the land degradation index via the IMDPA method. In all models, 70% of the data was applied for training, while 30% of data were employed for testing and validation. Monthly rainfall, TWI index, the distance of the river, Geographic location was the inputs and the level of groundwater was the output of each method. we found that ANN has the highest efficiency, which agrees with other findings. We combined the results of ANN with Ordinary Kriging and produced a groundwater condition map. According to the potential desertification map and groundwater level index, the potential of desertification had become severe since 2002 and was at a rate of 60% of land area, which, due to incorrect land management in 2016, increased to almost 98% of the land surface in the study area. Using ANN, we predicted that around 99% of the area was severely degraded for 2017. We also used latitude and longitude as input variables which improved the model. In addition to the target variable, latitude and longitude play important roles in Ordinary Kriging and decreased the total error of two combined models.


PROMINE ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 45-54
Author(s):  
Shalaho Dina Devy ◽  
Ibnu Hasyim

Bengalon is located in East Kutai Regency, East Kalimantan Province. Bengalon is included in the Samarinda-Bontang groundwater basin. The development of agricultural and industrial areas, followed by an increase in residential areas, will cause an increase in the water demand. This study aims to determine the groundwater potential of alluvial areas using the resistivity geoelectric method. The resistivity survey resulted in subsurface lithology, shallow groundwater conditions in the form of depth, thickness, and location of the aquifer as well as the type of groundwater quality. There are 10 locations for geoelectric data collection using the 2D geoelectric method. The results showed that the majority of the aquifers were alluvial deposits consisting of sand and sandy clay. The resistance indicating groundwater is 1 - 4 Ω m, at a depth of 10 – 50 m with a thickness varying from 10 – 20 m which has been dominated by sand. The presence of sea water intrusion in aquifers causes the quality of groundwater to tend to be brackish because the research location is in a swamp area bordering the coast.


2021 ◽  
Author(s):  
Geoffrey Fouad ◽  
Terrie M. Lee

Abstract A groundwater condition metric is presented and used to evaluate hydrologic changes in a regional population of wetlands in and around municipal well fields with large groundwater withdrawals. The approach compares a 26-year, monthly time series of groundwater potentiometric surfaces to light detection and ranging (LiDAR) land-surface elevations at 10,516 wetlands in a 1505-square-kilometer area. Elevation differences between the potentiometric surface and wetland land surface provide a flow direction (upward or downward) and a proxy for vertical hydraulic head difference in Darcy’s groundwater flow equation. The resulting metric quantifies the groundwater condition at a wetland through time as the potential for groundwater to discharge upward into a wetland or for water in a wetland to leak downward to recharge the underlying aquifer. The potential for wetland leakage across the regional wetland population decreased by 33% in the 13 years after cutbacks in groundwater withdrawals (2003-2015) compared to years before cutbacks (1990-2002). Inside well field properties, wetland leakage potential decreased by 24%. In the wet season month of September, wetlands with the potential to receive groundwater discharge increased to 21.6% of the regional population after cutbacks compared to 13.3% before cutbacks. When mapped across regional drainage basins, discharging wetlands formed spatial connections suggesting they play a critical role in generating streamflow.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Anna Fadliah Rusydi ◽  
Shin-Ichi Onodera ◽  
Mitsuyo Saito ◽  
Seiichiro Ioka ◽  
Rizka Maria ◽  
...  

AbstractThis paper evaluates environmental conditions responsible for the high concentrations of trace metals in Indonesian coastal groundwater. Indramayu, which has significant potential groundwater resources, but for which limited information is available regarding its vulnerability, is selected as our study area. Results show that Fe2+ and Mn2+ are natural contaminants in the groundwater of the study site. The correlations of trace metals with salinity and redox-sensitive parameters verify that saline water has a significant impact upon the dissolution of Fe and Mn. Furthermore, reductive condition is confirmed to be responsible for Fe and Mn dissolution with a less significant correlation compared to salinity. Moreover, the high concentrations of trace metals are coupled with high dissolved organic carbon (DOC), which indicates that reductive environment may arise because of organic-matter decomposition. Finally, the impact of human activity upon Fe and Mn dissolution is identified at the northern tip of Indramayu, where trace-metal contents are significantly elevated. Further, in the southern part, the groundwater condition is relatively more natural; thus, the impact of human activity upon the presence of Fe and Mn is lesser in this region.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Sutthipong Taweelarp ◽  
Morrakot Khebchareon ◽  
Schradh Saenton

Chiang Mai basin has an escalating population growth resulting in high demand for water consumption. Lack of surface water supply in most parts of the basin gives rise to the increasing use of groundwater which leads to a continuous decline in groundwater level in the past decades. This study is the first long-term groundwater monitoring and modeling study that aims at developing a transient, regional groundwater flow model of heterogeneous unconsolidated aquifers based on the MODFLOW program. Long-term groundwater monitoring data from 49 piezometers were used in model calibration and validation. The pilot points technique was used to account for the spatial variability of hydrogeologic parameters of heterogeneous aquifers. The simulation results and statistics showed that most sensitive and significant model parameters were spatially variable hydraulic conductivities and recharge rates. The Chiang Mai basin’s unconsolidated aquifers do not have high potential. The water table and/or potentiometric surface in the southeast and southwest areas of Chiang Mai city were continuously decreasing with no sign of recovery indicating critical groundwater condition and careful management must be considered. Safe yield calculation, based on a 2-m average drawdown threshold, suggested that unconsolidated aquifers of the Chiang Mai basin can sustain overall abstraction rates up to 51.2 Mm3/y or approximately 214% of the current extraction rates.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Sondipon Paul ◽  
Khairul Hasan

AbstractThe dry season irrigation primarily depends on groundwater in Bangladesh. The over-abstraction, along with decreasing recharge, is depleting the groundwater resource across the country. Consequently, the government of Bangladesh is planning to switch from groundwater to surface water irrigation. In line with this, Bangladesh Water Development Board has proposed to construct a rubber dam on the Mohananda river at the Chapai Nawabganj district. This work investigated the impact of the proposed reservoir facilitated surface water irrigation on the adjacent groundwater in the study area. A coupled river–groundwater modeling technique was used to predict the long-term groundwater condition. Results showed that the groundwater lowering rate reduced to 50 mm/year inside the irrigation zone compared to 87 mm/year outside the zone. Also, the augmented surface water irrigation raised the groundwater over an area of 141 km2 and 242 km2 in 2029 relative to the base condition of 2013 and existing irrigation practice if continued, respectively. Besides, the raised groundwater resulted in a higher discharge from the aquifer to the river. The study concludes that increased surface water irrigation successfully lowered the groundwater declination rate, especially in the surface water irrigation zone.


Warta Geologi ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 199-203
Author(s):  
Supriyadi Supriyadi ◽  
◽  
Fianti Fianti ◽  
Dwi Rizki R ◽  
Agus Setyawan ◽  
...  

Water is a unique property of the Earth and very important to every living organism. The existence of groundwater is only 0.61% of the total water on earth (oceans, rivers, lakes, polar ice, rain). The purpose of this research is to determine the location and depth of the aquifer by using 2D and 3D modeling. The method of research is resistivity method using Schlumberger configuration, where data is collected according to the survey design with coordinate ranging from X:436100, Y:9226880 to X:436680, Y:9227640, and covered by 7 lines. The modeling results indicate that the present groundwater aquifer potential has low resistivity distribution in this area. The spreading of unconfined aquifer is estimated on the north side to the east of Simpang 5 area. This can be seen from syncing the data of line one to six. But the data on line seven is of different patterns with other lines. The existence of groundwater basin is not easily identified on this line. This may be due to the location of Line Seven being located in the area of Ciputra Mall, Horison Hotel and Tlogorejo Hospital with higher consumption of water, thus the decrease in groundwater condition. This may cause conditions such as land subsidence. The results of interpretation based on the modeling show the possibility of an unconfined aquifer with groundwater level at 10-15 m depth with varied end of border groundwater depth.


Sign in / Sign up

Export Citation Format

Share Document