scholarly journals Wall Shear Rates in Taylor Vortex Flow

2011 ◽  
Vol 4 (02) ◽  
Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

In the simplest and original case of study of the Taylor–Couette TC problems, the fluid is contained between a fixed outer cylinder and a concentric inner cylinder which rotates at constant angular velocity. Much of the works done has been concerned on steady rotating cylinder(s) i.e. rotating cylinders with constant velocity and the various transitions that take place as the cylinder(s) velocity (ies) is (are) steadily increased. On this work, we concentrated our attention in the case in which the inner cylinder velocity is not constant, but oscillates harmonically (in time) clockwise and counter-clockwise while the outer cylinder is maintained fixed. Our aim is to attempt to answer the question if the modulation makes the flow more or less stable with respect to the vortices apparition than in the steady case. If the modulation amplitude is large enough to destabilise the circular Couette flow, two classes of axisymmetric Taylor vortex flow are possible: reversing Taylor Vortex Flow (RTVF) and Non-Reversing Taylor Vortex Flow (NRTVF) (Youd et al., 2003; Lopez and Marques, 2002). Our work presents an experimental investigation of the effect of oscillatory Couette-Taylor flow, i.e. both the oscillation frequency and amplitude on the apparition of RTVF and NRTVF by analysing the instantaneous and local mass transfer and wall shear rates evolutions, i.e. the impact of vortices at wall. The vortices may manifest themselves by the presence of time-oscillations of mass transfer and wall shear rates, this generally corresponds to an instability apparition even for steady rotating cylinder. On laminar CT flow, the time-evolution of wall shear rate is linear. It may be presented as a linear function of the angular velocity, i.e. the evolution is steady even if the angular velocity is not steady. At a “critical” frequency and amplitude, the laminar CT flow is disturbed and Taylor vortices appear. Comparing to a steady velocity case, oscillatory flow accelerate the instability apparition, i.e. the critical Taylor number corresponds to the transition is smaller than that of the steady case. For high oscillation amplitudes of the inner cylinder rotation, the mass transfer time-evolution has a sinusoidal evolution with non equal oscillation amplitudes. If the oscillation amplitude is large enough, it can destabilize the laminar Couette flow, Taylor vortices appears. The vortices direction can be deduced from the sign of the instantaneous wall shear rate time evolution.


1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2002 ◽  
Vol 35 (7) ◽  
pp. 692-695 ◽  
Author(s):  
Naoto Ohmura ◽  
Hirokazu Okamoto ◽  
Tsukasa Makino ◽  
Kunio Kataoka

1984 ◽  
Vol 138 ◽  
pp. 21-52 ◽  
Author(s):  
H. Fasel ◽  
O. Booz

For a wide gap (R1/R2= 0.5) and large aspect ratiosL/d, axisymmetric Taylor-vortex flow has been observed in experiments up to very high supercritical Taylor (or Reynolds) numbers. This axisymmetric Taylor-vortex flow was investigated numerically by solving the Navier–Stokes equations using a very accurate (fourth-order in space) implicit finite-difference method. The high-order accuracy of the numerical method, in combination with large numbers of grid points used in the calculations, yielded accurate and reliable results for large supercritical Taylor numbers of up to 100Tac(or 10Rec). Prior to this study numerical solutions were reported up to only 16Tac. The emphasis of the present paper is placed upon displaying and elaborating the details of the flow field for large supercritical Taylor numbers. The flow field undergoes drastic changes as the Taylor number is increased from just supercritical to 100Tac. Spectral analysis (with respect toz) of the flow variables indicates that the number of harmonics contributing substantially to the total solution increases sharply when the Taylor number is raised. The number of relevant harmonics is already unexpectedly high at moderate supercriticalTa. For larger Taylor numbers, the evolution of a jetlike or shocklike flow structure can be observed. In the axial plane, boundary layers develop along the inner and outer cylinder walls while the flow in the core region of the Taylor cells behaves in an increasingly inviscid manner.


1993 ◽  
Vol 48 (1) ◽  
pp. 13-24
Author(s):  
J.F. Hasiuk ◽  
J.D. Iversen ◽  
R.H. Pletcher ◽  
R.G. Hindman

Author(s):  
G B McFadden ◽  
B T Murray ◽  
S R Coriell ◽  
M E Glicksman ◽  
M E Selleck

Sign in / Sign up

Export Citation Format

Share Document