scholarly journals Modeling interaction between distribution company and networked microgrids in optimal operation of active distribution network

Author(s):  
Himan Hamedi ◽  
◽  
Vahid Talavat ◽  
Ali Tofighi ◽  
Reza Ghanizadeh ◽  
...  

In this paper, the interaction between energy sellers and buyers in utilizing active distribution networks is modeled with considering two networked and non-networked modes of microgrids (MGs). A retail electricity market is modeled as a bi-level problem. Accordingly, the Distribution Company (DISCO) in the upper level in order to maximize the profit offers an optimal price to MGs. While in the lower level, the MGs to compare the offered prices by DISCO with the prices of MGs generation sources for minimizing the total costs decided to whether to buy from the DISCO or not. As the first contribution of the paper is to consider the networked operation of the MGs under a unique beneficiary of MGs (BMG). As the second contribution, two very important indices reserve and self-adequacy are considered, which are necessary in the problems related to MGs. In this paper, the impact of considering and disregarding two important reserve and self-adequacy indices of MGs on the profit of the DISCO in two different scenarios is investigated. In each scenario, the impact of considering two modes networked and non-networked of MGs on the profit of DISCO is investigated. Simulation results show the efficiency the presented model.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Guray Kara ◽  
Paolo Pisciella ◽  
Asgeir Tomasgard ◽  
Hossein Farahmand


2021 ◽  
Vol 8 ◽  
Author(s):  
Jian Wang ◽  
Niancheng Zhou ◽  
Anqi Tao ◽  
Qianggang Wang

Soft open point-based energy storage (SOP-based ES) can transfer power in time and space and also regulate reactive power. These characteristics help promote the integration of distributed generations (DGs) and reduce the operating cost of active distribution networks (ADNs). Therefore, this work proposed an optimal operation model for SOP-based ES in ADNs by considering the battery lifetime. First, the active and reactive power equations of SOP-based ES and battery degradation cost were modeled. Then, the optimal operation model that includes the operation cost of ADNs, loss cost, and battery degradation cost was established. The mixed integer nonlinear programming model was transformed to a mixed integer linear programming model derived through linearization treatment. Finally, the feasibility and effectiveness of the proposed optimization model are verified by the IEEE33 node system.



2019 ◽  
Vol 10 (1) ◽  
pp. 380-391 ◽  
Author(s):  
Peng Li ◽  
Haoran Ji ◽  
Chengshan Wang ◽  
Jinli Zhao ◽  
Guanyu Song ◽  
...  


2021 ◽  
Vol 13 (23) ◽  
pp. 13201
Author(s):  
Mohammad Reza Mansouri ◽  
Mohsen Simab ◽  
Bahman Bahmani Firouzi

This paper presents an innovative instantaneous pricing scheme for optimal operation and improved reliability for distribution systems (DS). The purpose of the proposed program is to maximize the operator’s expected profit under various risk-taking conditions, such that the customers pay the minimum cost to supply energy. Using the previous information of the energy consumption for each customer, a customer baseline load (CBL) is defined; the energy price for consumption costs higher and lower than this level would be different. The proposed scheme calculates the difference between the baseline load and the consumption curve with the electricity market price instead of calculating the total consumption of the customers with the unstable price of the electricity market, which is uncertain. In the proposed tariff, the developed cost and load models are included in the distribution system operation problem, and the objective function is modeled as a mixed integer linear programming (MILP) problem. Also, the effect of demand response (DR) and elasticity on the load curve, the final profit of the distribution system operator, and payment risk and operation costs are examined. Since there are various uncertainties in the smart distribution grid, the calculations being time-consuming and volumetric is important in the evaluation of reliability indices. Thus, when computation volume can be decreased and computation speed can be increased, analytical reliability analysis methods can be used, as they were in the present work. Finally, the changes in the reliability indices were calculated for the ratio of the customers’ sensitivity to the price and the customers’ participation in the proposed tariff using an analytical method based on Monte Carlo simulation (MCS). The results showed the efficiency of the proposed method in increasing the operator profit, reducing the operation costs, and enhancing the reliability indices.





Sign in / Sign up

Export Citation Format

Share Document