scholarly journals Implicit functional differential equations with linear modification of the argument, via weakly Picard operator theory

2021 ◽  
Vol 37 (2) ◽  
pp. 227-234
Author(s):  
ANTON S. MUREŞAN ◽  
VIORICA MUREŞAN

"Let \mathbf{K}:=\mathbf{R}\text{ or }\mathbf{C},\text{ \ }0<\lambda <1 and f \in C([0,b] \times \textbf{K}^3,\textbf{K}). In this paper we use the weakly Picard operator theory technique to study the following functional-differential equation $$ y'(x)=f(x,y(x),y'(x),y(\lambda x)), x \in [0,b].$$ "

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Veronica Ana Ilea ◽  
Diana Otrocol

Existence, uniqueness, data dependence (monotony, continuity, and differentiability with respect to parameter), and Ulam-Hyers stability results for the solutions of a system of functional-differential equations with delays are proved. The techniques used are Perov’s fixed point theorem and weakly Picard operator theory.


2012 ◽  
Vol 616-618 ◽  
pp. 2137-2141
Author(s):  
Zhi Min Luo ◽  
Bei Fei Chen

This paper studied the asymptotic behavior of a class of nonlinear functional differential equations by using the Bellman-Bihari inequality. We obtain results which extend and complement those in references. The results indicate that all non-oscillatory continuable solutions of equation are asymptotic to at+b as under some sufficient conditions, where a,b are real constants. An example is provided to illustrate the application of the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
T. E. Govindan

This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jun Zhou ◽  
Jun Shen

<p style='text-indent:20px;'>In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation <inline-formula><tex-math id="M1">\begin{document}$ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $\end{document}</tex-math></inline-formula> As <inline-formula><tex-math id="M2">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula>, this equation can be regarded as a mixed-type functional differential equation with state-dependence <inline-formula><tex-math id="M3">\begin{document}$ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $\end{document}</tex-math></inline-formula> of a special form but, being a nonlinear operator, <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula>-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.</p>


1978 ◽  
Vol 26 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Hiroshi Onose

AbstractIn the last few years, the oscillatory behavior of functional differential equations has been investigated by many authors. But much less is known about the first-order functional differential equations. Recently, Tomaras (1975b) considered the functional differential equation and gave very interesting results on this problem, namely the sufficient conditions for its solutions to oscillate. The purpose of this paper is to extend and improve them, by examining the more general functional differential equation


Author(s):  
F. Kappel ◽  
W. Schappacher

SynopsisThe equivalence between solutions of functional differential equations and an abstract integral equation is investigated. Using this result we derive a general approximation result in the state space C and consider as an example approximation by first order spline functions. During the last twenty years C1-semigroups of linear transformations have played an important role in the theory of linear autonomous functional differential equations (cf. for instance the discussion in [9, Section 7.7]). Applications of non-linear semigroup theory to functional differential equations are rather recent beginning with a paper by Webb [17]. Since then a considerable number of papers deal with problems in this direction. A common feature of the majority of these papers is that as a first step with the functional differential equation there is associated a non-linear operator A in a suitable Banach-space. Then appropriate conditions are imposed on the problem such that the conditions of the Crandall-Liggett-Theorem [5] hold for the operator A. This gives a non-linear semigroup. Finally the connection of this semigroup tothe solutions of the original differential equation has to be investigated [c.f. 8, 15, 18]. To solve thislast problem in general is the most difficult part of this approach.In the present paper we consider the given functional differential equation as a perturbation of the simple equationx = 0. The solutions of this equation generate a very simple C1-semigroup. The solutions of the original functional differential equation generate solutions of an integral equation which is the variation of constants formula for the abstract Cauchy problem associated with the equation x = 0. Under very mild conditions we can prove a one-to-one correspondence between solutions of the given functional differential equation and solutions of the integral equation in the Lp-space setting. In the C-space setting the integral equation inthe state space has to be replaced by a ‘pointwise’ integral equation. Using the pointwise integral equation together with a theorem which guarantees continuous dependence of fixed points on parameters we show under rather weak hypotheses that the original functional differential equation can be approximated by a sequence of ordinary differential equations. Using 1st order spline functions we finally get results which are very similar to those obtained in [1 and 11] in the L2-space setting.


2000 ◽  
Vol 5 (4) ◽  
pp. 245-263 ◽  
Author(s):  
Bernd Aulbach ◽  
Nguyen Van Minh

We study evolution semigroups associated with nonautonomous functional differential equations. In fact, we convert a given functional differential equation to an abstract autonomous evolution equation and then derive a representation theorem for the solutions of the underlying functional differential equation. The representation theorem is then used to study the boundedness and almost periodicity of solutions of a class of nonautonomous functional differential equations.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu

We study one-signed periodic solutions of the first-order functional differential equationu'(t)=-a(t)u(t)+λb(t)f(u(t-τ(t))),t∈Rby using global bifurcation techniques. Wherea,b∈C(R,[0,∞))areω-periodic functions with∫0ωa(t)dt>0,∫0ωb(t)dt>0,τis a continuousω-periodic function, andλ>0is a parameter.f∈C(R,R)and there exist two constantss2<0<s1such thatf(s2)=f(0)=f(s1)=0,f(s)>0fors∈(0,s1)∪(s1,∞)andf(s)<0fors∈(-∞,s2)∪(s2,0).


1989 ◽  
Vol 40 (3) ◽  
pp. 345-355
Author(s):  
Shaozhu Chen ◽  
Qingguang Huang

Sufficient or necessary conditions are established so that the neutral functional differential equation [x(t) − G(t, xt)]″ + F(t, xt) = 0 has a solution which is asymptotic to a given solution of the related difference equation x(t) = G(t, xt) + a + bt, where a and b are constants.


Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

We use waveform relaxation (WR) method to solve numerically fractional neutral functional differential equations and mainly consider the convergence of the numerical method with the help of a generalized Volterra-integral operator associated with the Mittag–Leffler function. We first give some properties of the integral operator. Using the proposed properties, we establish the convergence condition of the numerical method. Finally, we provide a new way to prove the convergence of waveform relaxation method for integer-order neutral functional differential equation, which is a special case of fractional neutral functional differential equation. Compared to the existing proof in the literature, our proof is concise and original.


Sign in / Sign up

Export Citation Format

Share Document