scholarly journals A fast viscosity forward-backward algorithm for convex minimization problems with an application in image recovery

2021 ◽  
Vol 37 (3) ◽  
pp. 449-461
Author(s):  
PACHARA JAILOKA ◽  
◽  
SUTHEP SUANTAI ◽  
ADISAK HANJING ◽  
◽  
...  

The purpose of this paper is to invent an accelerated algorithm for the convex minimization problem which can be applied to the image restoration problem. Theoretically, we first introduce an algorithm based on viscosity approximation method with the inertial technique for finding a common fixed point of a countable family of nonexpansive operators. Under some suitable assumptions, a strong convergence theorem of the proposed algorithm is established. Subsequently, we utilize our proposed algorithm to solving a convex minimization problem of the sum of two convex functions. As an application, we apply and analyze our algorithm to image restoration problems. Moreover, we compare convergence behavior and efficiency of our algorithm with other well-known methods such as the forward-backward splitting algorithm and the fast iterative shrinkage-thresholding algorithm. By using image quality metrics, numerical experiments show that our algorithm has a higher efficiency than the mentioned algorithms.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2619
Author(s):  
Panadda Thongpaen ◽  
Rattanakorn Wattanataweekul

In this paper, we introduce a new iterative method using an inertial technique for approximating a common fixed point of an infinite family of nonexpansive mappings in a Hilbert space. The proposed method’s weak convergence theorem was established under some suitable conditions. Furthermore, we applied our main results to solve convex minimization problems and image restoration problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Suthep Suantai ◽  
Pachara Jailoka ◽  
Adisak Hanjing

AbstractIn this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.


1976 ◽  
Vol 15 (1) ◽  
pp. 141-148 ◽  
Author(s):  
J. Parida ◽  
B. Sahoo

A theorem on the existence of a solution under feasibility assumptions to a convex minimization problem over polyhedral cones in complex space is given by using the fact that the problem of solving a convex minimization program naturally leads to the consideration of the following nonlinear complementarity problem: given g: Cn → Cn, find z such that g(z) ∈ S*, z ∈ S, and Re〈g(z), z〉 = 0, where S is a polyhedral cone and S* its polar.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 156 ◽  
Author(s):  
Chanjuan Pan ◽  
Yuanheng Wang

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Suthep Suantai ◽  
Kunrada Kankam ◽  
Prasit Cholamjiak

In this work, we aim to investigate the convex minimization problem of the sum of two objective functions. This optimization problem includes, in particular, image reconstruction and signal recovery. We then propose a new modified forward-backward splitting method without the assumption of the Lipschitz continuity of the gradient of functions by using the line search procedures. It is shown that the sequence generated by the proposed algorithm weakly converges to minimizers of the sum of two convex functions. We also provide some applications of the proposed method to compressed sensing in the frequency domain. The numerical reports show that our method has a better convergence behavior than other methods in terms of the number of iterations and CPU time. Moreover, the numerical results of the comparative analysis are also discussed to show the optimal choice of parameters in the line search.


Sign in / Sign up

Export Citation Format

Share Document