On the approximation of convex functions using linear positive operators

2017 ◽  
Vol 26 (2) ◽  
pp. 137-143
Author(s):  
DAN BARBOSU

The goal of the paper is to present some results concerning the approximation of convex functions by linear positive operators. First, one recalls some results concerning the univariate real valued convex functions. Next, one presents the notion of higher order convexity introduced by Popoviciu [Popoviciu, T., Sur quelques propri´et´ees des fonctions d’une ou deux variable r´eelles, PhD Thesis, La Faculte des Sciences de Paris, 1933 (June)] . The Popoviciu’s famous theorem for the representation of linear functionals associated to convex functions of m−th order (with the proof of author) is also presented. Finally, applications of the convexity to study the monotonicity of sequences of some linear positive operators and also mean value theorems for the remainder term of some approximation formulas based on linear positive operators are presented.

2018 ◽  
Vol 11 (04) ◽  
pp. 1850060 ◽  
Author(s):  
Nasir Mehmood ◽  
Saad Ihsan Butt ◽  
Josip Pečarić

We consider discrete and continuous cyclic refinements of Jensen’s inequality and generalize them from convex function to higher order convex function by means of Lagrange Green’s function and Montgomery identity. We give application of our results by formulating the monotonicity of the linear functionals obtained from generalized identities utilizing the theory of inequalities for [Formula: see text]-convex functions at a point. We compute Grüss and Ostrowski type bounds for generalized identities associated with the obtained inequalities. Finally, we investigate the properties of linear functionals regarding exponential convexity log convexity and mean value theorems.


Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

AbstractDeVore-Gopengauz-type operators have attracted some interest over the recent years. Here we investigate their relationship to shape preservation. We construct certain positive convolution-type operators Hn, s, j which leave the cones of j-convex functions invariant and give Timan-type inequalities for these. We also consider Boolean sum modifications of the operators Hn, s, j show that they basically have the same shape preservation behavior while interpolating at the endpoints of [−1, 1], and also satisfy Telyakovskiῐ- and DeVore-Gopengauz-type inequalities involving the first and second order moduli of continuity, respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov, Beatson, DeVore, Yu and Leviatan.


2018 ◽  
Vol 68 (4) ◽  
pp. 773-788 ◽  
Author(s):  
Sadia Khalid ◽  
Josip Pečarić ◽  
Ana Vukelić

Abstract In this work, the Green’s function of order two is used together with Fink’s approach in Ostrowski’s inequality to represent the difference between the sides of the Sherman’s inequality. Čebyšev, Grüss and Ostrowski-type inequalities are used to obtain several bounds of the presented Sherman-type inequality. Further, we construct a new family of exponentially convex functions and Cauchy-type means by looking to the linear functionals associated with the obtained inequalities.


2021 ◽  
Vol 45 (5) ◽  
pp. 797-813
Author(s):  
SAJID IQBAL ◽  
◽  
GHULAM FARID ◽  
JOSIP PEČARIĆ ◽  
ARTION KASHURI

In this paper we present variety of Hardy-type inequalities and their refinements for an extension of Riemann-Liouville fractional derivative operators. Moreover, we use an extension of extended Riemann-Liouville fractional derivative and modified extension of Riemann-Liouville fractional derivative using convex and monotone convex functions. Furthermore, mean value theorems and n-exponential convexity of the related functionals is discussed.


2021 ◽  
Author(s):  
Lakshmi Narayan Mishra ◽  
A. Srivastava ◽  
T. Khan ◽  
S. A. Khan ◽  
Vishnu Narayan Mishra

Sign in / Sign up

Export Citation Format

Share Document