A comparison between two competing sixth convergence order algorithms under the same set of conditions

2021 ◽  
Vol 30 (1) ◽  
pp. 19-28
Author(s):  
GUS ARGYROS ◽  
MICHAEL ARGYROS ◽  
IOANNIS K. ARGYROS ◽  
GEORGE SANTHOSH

There is a plethora of algorithms of the same convergence order for generating a sequence approximating a solution of an equation involving Banach space operators. But the set of convergence criteria is not the same in general. This makes the comparison between them hard and only numerically. Moreover, the convergence is established using Taylor series and by assuming the existence of high order derivatives not even appearing on these algorithms. Furthermore, no computable error estimates, uniqueness for the solution results or a ball of convergence is given. We address all these problems by using only the first derivative that actually appears on these algorithms and under the same set of convergence conditions. Our technique is so general that it can be used to extend the applicability of other algorithms along the same lines.

Author(s):  
Gus Argyros ◽  
Michael Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

There is a plethora of schemes of the same convergence order for generating a sequence approximating a solution of an equation involving Banach space operators. But the set of convergence criteria is not the same in general. This makes the comparison between them challenging and only numerically. Moreover, the convergence is established using Taylor series and by assuming the existence of high order derivatives that do not even appear on these schemes. Furthermore, no computable error estimates, uniqueness for the solution results or a ball of convergence is given. We address all these problems by using only the first derivative that actually appears on these schemes and under the same set of convergence conditions. Our technique is so general that it can be used to extend the applicability of other schemes along the same lines.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples where the convergence criteria are tested are provided. It turns out that in these examples the criteria in the earlier works are not satisfied, so these results cannot be used to solve equations but our results can be used.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 147
Author(s):  
Samundra Regmi ◽  
Ioannis K. Argyros ◽  
Santhosh George

A local convergence comparison is presented between two ninth order algorithms for solving nonlinear equations. In earlier studies derivatives not appearing on the algorithms up to the 10th order were utilized to show convergence. Moreover, no error estimates, radius of convergence or results on the uniqueness of the solution that can be computed were given. The novelty of our study is that we address all these concerns by using only the first derivative which actually appears on these algorithms. That is how to extend the applicability of these algorithms. Our technique provides a direct comparison between these algorithms under the same set of convergence criteria. This technique can be used on other algorithms. Numerical experiments are utilized to test the convergence criteria.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 260 ◽  
Author(s):  
Janak Sharma ◽  
Ioannis Argyros ◽  
Sunil Kumar

The convergence order of numerous iterative methods is obtained using derivatives of a higher order, although these derivatives are not involved in the methods. Therefore, these methods cannot be used to solve equations with functions that do not have such high-order derivatives, since their convergence is not guaranteed. The convergence in this paper is shown, relying only on the first derivative. That is how we expand the applicability of some popular methods.


2018 ◽  
Vol 21 (3) ◽  
pp. 746-774 ◽  
Author(s):  
Zhiqiang Li ◽  
Yubin Yan

Abstract Error estimates of some high-order numerical methods for solving time fractional partial differential equations are studied in this paper. We first provide the detailed error estimate of a high-order numerical method proposed recently by Li et al. [21] for solving time fractional partial differential equation. We prove that this method has the convergence order O(τ3−α) for all α ∈ (0, 1) when the first and second derivatives of the solution are vanish at t = 0, where τ is the time step size and α is the fractional order in the Caputo sense. We then introduce a new time discretization method for solving time fractional partial differential equations, which has no requirements for the initial values as imposed in Li et al. [21]. We show that this new method also has the convergence order O(τ3−α) for all α ∈ (0, 1). The proofs of the error estimates are based on the energy method developed recently by Lv and Xu [26]. We also consider the space discretization by using the finite element method. Error estimates with convergence order O(τ3−α + h2) are proved in the fully discrete case, where h is the space step size. Numerical examples in both one- and two-dimensional cases are given to show that the numerical results are consistent with the theoretical results.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 667
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros ◽  
Jose Antonio Tenreiro Machado

Three methods of sixth order convergence are tackled for approximating the solution of an equation defined on the finitely dimensional Euclidean space. This convergence requires the existence of derivatives of, at least, order seven. However, only derivatives of order one are involved in such methods. Moreover, we have no estimates on the error distances, conclusions about the uniqueness of the solution in any domain, and the convergence domain is not sufficiently large. Hence, these methods have limited usage. This paper introduces a new technique on a general Banach space setting based only the first derivative and Lipschitz type conditions that allow the study of the convergence. In addition, we find usable error distances as well as uniqueness of the solution. A comparison between the convergence balls of three methods, not possible to drive with the previous approaches, is also given. The technique is possible to use with methods available in literature improving, consequently, their applicability. Several numerical examples compare these methods and illustrate the convergence criteria.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 207
Author(s):  
Ioannis K. Argyros ◽  
Debasis Sharma ◽  
Christopher I. Argyros ◽  
Sanjaya Kumar Parhi ◽  
Shanta Kumari Sunanda ◽  
...  

A variety of strategies are used to construct algorithms for solving equations. However, higher order derivatives are usually assumed to calculate the convergence order. More importantly, bounds on error and uniqueness regions for the solution are also not derived. Therefore, the benefits of these algorithms are limited. We simply use the first derivative to tackle all these issues and study the ball analysis for two sixth order algorithms under the same set of conditions. In addition, we present a calculable ball comparison between these algorithms. In this manner, we enhance the utility of these algorithms. Our idea is very general. That is why it can also be used to extend other algorithms as well in the same way.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The applicability of an efficient sixth convergence order scheme is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the scheme. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided (not given in earlier works) based on ω–continuity conditions. Numerical examples complete this article.


2021 ◽  
pp. 246-257
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Christopher I. Argyros

The applicability of two competing efficient sixth convergence order schemes is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the schemes. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided not given in the earlier works based on ω-continuity conditions. Our technique extends other schemes analogously, since it is so general. Numerical examples complete this work.


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


Sign in / Sign up

Export Citation Format

Share Document