scholarly journals On the essential spectrum of Banach-space operators

2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.

1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jennifer Bravo ◽  
Carlos Lizama

AbstractWe show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ t 0 ≥ 0 and $M>0$ M > 0 such that $\{(im)^{\alpha }\}_{|m|> t_{0}} \subset \rho (A)$ { ( i m ) α } | m | > t 0 ⊂ ρ ( A ) , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A+(im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ ∥ ( i m ) α ( A + ( i m ) α I ) − 1 ∥ ≤ M  for all  | m | > t 0 , m ∈ Z , then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ 1 p < α ≤ 2 p and $1< p < 2$ 1 < p < 2 , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) + Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ { D t α G L u ( t ) + A u ( t ) = f ( t ) , t ∈ ( 0 , 2 π ) ; u ( 0 ) = u ( 2 π ) , where $_{GL}D^{\alpha }$ D α G L denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ f ∈ L 2 π p ( R , X ) that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ ϕ A ∈ ( 0 , α π / 2 ) and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ ∫ 0 2 π f ( t ) d t ∈ Ran ( A ) .


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


Author(s):  
M. S. P. Eastham ◽  
W. N. Everitt

SynopsisThe paper gives asymptotic estimates of the formas λ→∞ for the length l(μ)of a gap, centre μ in the essential spectrum associated with second-order singular differential operators. The integer r will be shown to depend on the differentiability properties of the coefficients in the operators and, in fact, r increases with the increasing differentiability of the coefficients. The results extend to all r ≧ – 2 the long-standing ones of Hartman and Putnam [10], who dealt with r = 0, 1, 2.


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


Sign in / Sign up

Export Citation Format

Share Document