scholarly journals The main regularities of hydrodynamic effect caused by natural marine conditions on the underwater objects

Author(s):  
Ю.В. Гурьев ◽  
М.З. Слуцкая

Обеспечение управляемости морских объектов серьезно усложняется при их движении в сложных условиях морского волнения, ветра и других. Для подводных объектов важным фактором, влияющим на их движение, является существенная пространственно-временная неоднородность натурных гидрофизических полей плотности и скорости, а также внутренние волны, возникающие на границах резкого изменения плотности морской воды (пикноклина). Для проектирования и безопасного маневрирования в таких условиях необходимо знание основных закономерностей их воздействия на гидродинамику этих объектов. Использование натурного и модельного физического эксперимента для решения этой проблемы затрудняется ограниченными возможностями моделирования натурных условий, проблемой измерения нестационарных сил и моментов, а также наличием масштабного эффекта по критерию Рейнольдса. Наиболее эффективным способом решения задачи является применение методов вычислительной гидродинамики и компьютерных технологий. В статье излагаются результаты вычислительного эксперимента, проведенного на основе разработанных авторами физико-математической модели и численного метода прогнозирования силового воздействия морской среды на подводные объекты. Допущение о потенциальном характере течения согласуется с современными моделями как поверхностных, так и внутренних волн, и позволяет создать единую потенциальную гидродинамическую модель обтекания подводного объекта неоднородным потоком. При этом производится косвенный учет влияния вязкости на распределение давлений на корпусе путем введения специальной вихревой системы. В качестве модели внутренней волны используется модифицированная авторами двухслойная потенциальная модель Сретенского Л.Н. На основе анализа вычислительного эксперимента сформулирован ряд новых закономерностей такого воздействия, в частности, получены качественные и количественные зависимости гидродинамических сил от параметров пикноклина и внутренней волны, кораблестроительных характеристик объекта и ряда других. Предложенный программный продукт и выявленные закономерности могут быть использованы в практике проектирования подводных объектов, эксплуатируемых в условиях пространственно-временной неоднородности гидрофизических полей Океана и при создании тренажеров-имитаторов динамики морских объектов. Ensuring the controllability of marine objects is made much more difficult when they move in complex conditions of sea waves, wind and so forth. For underwater objects an important factor affecting their movement is a substantial spatio-temporal heterogeneity of natural hydrophysical fields of density and velocity, as well as internal waves that appear at the borderlines of a rapid change of sea water density (pycnocline). For designing and safe manoeuvring in such conditions it is necessary to know the main regularities of their effect on the hydrodynamics of these objects. Using a natural and model physical experiment to solve this problem is made harder by the limited capabilities of natural conditions modeling, the problem of measurement of unsteady forces and moments, as well as existence of a scale effect according to Reynolds criterion. The most efficient method to solve this task is application of methods of computational fluid dynamics and computer technology. The article presents the results of a computing experiment, which was conducted on the basis of a physico-mathematical model and numerical method for predicting a force impact of marine environment on the underwater objects. An assumption about a potential nature of the current is in agreement with the modern models of surface and internal waves, and this allows to create a unified potential hydrodynamical model of heterogeneity stream flowing around an underwater object. At the same time we make a indirect accounting for the effect of viscosity on pressure distribution on the hull by introducing a special vortex system. As a model for a internal wave we use a two layer potential model by L.N. Sretensky, modified by the authors. On the basis of analysis of the computing experiment several new regularities of such effect were formulated, in particular, as the result of experiment were obtained qualitative and quantitative relationships of hydrodynamic forces with pycnocline parameters and internal wave, shipbuilding characteristics of the object and some others. The proposed software product and the revealed regularities can be used in the practice of designing underwater objects operated in the conditions of spatio-temporal heterogeneity of the hydrophysical fields of the Ocean and in creating simulators for the dynamics of marine objects.

2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


1983 ◽  
Vol 18 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mark K. Watson ◽  
R.R. Hudgins ◽  
P.L. Silveston

Abstract Internal wave motion was studied in a laboratory rectangular, primary clarifier. A photo-extinction device was used as a turbidimeter to measure concentration fluctuations in a small volume within the clarifier as a function of time. The signal from this device was fed to a HP21MX minicomputer and the power spectrum plotted from data records lasting approximately 30 min. Results show large changes of wave amplitude as frequency increases. Two distinct regions occur: one with high amplitudes at frequencies below 0.03 Hz, the second with very small amplitudes appears for frequencies greater than 0.1 Hz. The former is associated with internal waves, the latter with flow-generated turbulence. Depth, velocity in the clarifier and inlet suspended solids influence wave amplitudes and the spectra. A variation with position or orientation of the probe was not detected. Contradictory results were found for the influence of flow contraction baffles on internal wave amplitude.


2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


1976 ◽  
Vol 78 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Michael Milder

The scaled vorticity Ω/N and strain ∇ ζ associated with internal waves in a weak density gradient of arbitrary depth dependence together comprise a quantity that is conserved in the usual linearized approximation. This quantity I is the volume integral of the dimensionless density DI = ½[Ω2/N2 + (∇ ζ)2]. For progressive waves the ‘kinetic’ and ‘potential’ parts are equal, and in the short-wavelength limit the density DI and flux FI are related by the ordinary group velocity: FI = DIcg. The properties of DI suggest that it may be a useful measure of local internal-wave saturation.


Sign in / Sign up

Export Citation Format

Share Document