temporal heterogeneity
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 134)

H-INDEX

40
(FIVE YEARS 7)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 199
Author(s):  
Xuemei Li ◽  
Bo Zhang ◽  
Rui Ren ◽  
Lanhai Li ◽  
Slobodan P. Simonovic

The Chinese Tianshan mountainous region (CTMR) is a typical alpine region with high topographic heterogeneity, characterized by a large altitude span, complex topography, and diverse landscapes. A significant increase in air temperature had occurred in the CTMR during the last five decades. However, the detailed, comprehensive, and systematical characteristics of climate warming, such as its temporal and spatial heterogeneity, remain unclear. In this study, the temporal and spatial heterogeneity of climate warming across the CTMR had been comprehensively analyzed based on the 10-day air temperature data gathered during 1961–2020 from 26 meteorological stations. The results revealed local cooling in the context of general warming in the CTMR. The amplitude of variation (AV) varied from −0.57 to 3.64 °C, with the average value of 1.19 °C during the last six decades. The lapse rates of the elevation-dependent warming that existed annually, and in spring, summer, and autumn are −0.5 °C/100 m, −0.5 °C/100 m, −0.7 °C/100 m, and −0.4 °C/100 m, respectively. The warming in the CTMR is characteristic of high temporal heterogeneity, as represented by the amplified warming at 10-d scale for more than half a year, and the values of AV were higher than 1.09 °C of the global warming during 2011–2020 (GWV2011–2020). Meanwhile, the amplitudes of warming differed greatly on a seasonal scale, with the rates in spring, autumn, and winter higher than that in summer. The large spatial heterogeneity of climate warming also occurred across the CTMR. The warming pole existed in the warm part, the Turpan-Hami basin (below 1000 m asl) where the air temperature itself was high. That is, the warm places were warmer across the CTMR. The cooling pole was also found in the Kuqa region (about 1000 m asl). This study could greatly improve the understanding of the spatio-temporal dynamics, patterns, and regional heterogeneity of climate warming across the CTMR and even northwest China.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sandra van Wilpe ◽  
Mark A. J. Gorris ◽  
Lieke L. van der Woude ◽  
Shabaz Sultan ◽  
Rutger H. T. Koornstra ◽  
...  

Checkpoint inhibitors targeting PD-(L)1 induce objective responses in 20% of patients with metastatic urothelial cancer (UC). CD8+ T cell infiltration has been proposed as a putative biomarker for response to checkpoint inhibitors. Nevertheless, data on spatial and temporal heterogeneity of tumor-infiltrating lymphocytes in advanced UC are lacking. The major aims of this study were to explore spatial heterogeneity for lymphocyte infiltration and to investigate how the immune landscape changes during the disease course. We performed multiplex immunohistochemistry to assess the density of intratumoral and stromal CD3+, CD8+, FoxP3+ and CD20+ immune cells in longitudinally collected samples of 49 UC patients. Within these samples, spatial heterogeneity for lymphocyte infiltration was observed. Regions the size of a 0.6 tissue microarray core (0.28 mm2) provided a representative sample in 60.6 to 71.6% of cases, depending on the cell type of interest. Regions of 3.30 mm2, the median tumor surface area in our biopsies, were representative in 58.8 to 73.8% of cases. Immune cell densities did not significantly differ between untreated primary tumors and metachronous distant metastases. Interestingly, CD3+, CD8+ and FoxP3+ T cell densities decreased during chemotherapy in two small cohorts of patients treated with neoadjuvant or palliative platinum-based chemotherapy. In conclusion, spatial heterogeneity in advanced UC challenges the use of immune cell infiltration in biopsies as biomarker for response prediction. Our data also suggests a decrease in tumor-infiltrating T cells during platinum-based chemotherapy.


2021 ◽  
Vol 14 (1) ◽  
pp. 395
Author(s):  
Tingling Li ◽  
Kangning Xiong ◽  
Shan Yang ◽  
Haiyan Liu ◽  
Yao Qin ◽  
...  

In recent years, in the face of the deterioration of the ecological environment, the research on forest ecological assets (FEA) has increasingly become a focal area of ecological research. To understand the current research progress and future prospects, this paper classifies and summarizes the main progress and achievements related to FEA in terms of theoretical studies, index systems, technical methods, and accounting models. In view of the existing research results, this paper proposes seven key scientific and technical problems and prospects to be solved, including the unification of the concept of ecological assets, the focus of future research on FEA, the construction of an evaluation index system according to local conditions, the integration of data assimilation methods that complement ground and remote sensing observations, the study of the spatial and temporal heterogeneity of forest ecological assets, the study of the net value of FEA, and the preservation and appreciation of FEA.


2021 ◽  
Vol 18 (22) ◽  
pp. 6077-6091
Author(s):  
Trina Merrick ◽  
Stephanie Pau ◽  
Matteo Detto ◽  
Eben N. Broadbent ◽  
Stephanie A. Bohlman ◽  
...  

Abstract. Recently, remotely sensed measurements of the near-infrared reflectance (NIRv) of vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of vegetation have emerged as indicators of vegetation structure and function with potential to enhance or improve upon commonly used indicators, such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and biodiversity, has been limited. In particular, fine-scale spatial and temporal heterogeneity of structure and physiology may contribute to variation in these indices and the properties that are presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR). In this study, fine-scale (approx. 15 cm) tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad and by lidar-derived height is investigated and compared to NIRv and EVI using unoccupied aerial system (UAS)-based hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and NIRvrad captured the greatest spatiotemporal variability, followed by the enhanced vegetation index (EVI) and then the normalized difference vegetation index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of all indicators was driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree crowns. NIRv, FCVI, NIRvrad, and EVI captured variability at smaller spatial scales (∼ 50 m) than NDVI (∼ 90 m) and the lidar-based surface model (∼ 70 m). We show that spatial and temporal patterns of NIRv and FCVI were virtually identical for a dense green canopy, confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not require separate irradiance measurements, correlated more strongly with GPP and PAR than did other indicators. NIRv, FCVI, and NIRvrad, which are related to canopy structure and the radiation regime of vegetation canopies, are promising tools to improve understanding of tropical forest canopy structure and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mathew E. Hauer ◽  
Dean Hardy ◽  
Scott A. Kulp ◽  
Valerie Mueller ◽  
David J. Wrathall ◽  
...  

AbstractThe exposure of populations to sea-level rise (SLR) is a leading indicator assessing the impact of future climate change on coastal regions. SLR exposes coastal populations to a spectrum of impacts with broad spatial and temporal heterogeneity, but exposure assessments often narrowly define the spatial zone of flooding. Here we show how choice of zone results in differential exposure estimates across space and time. Further, we apply a spatio-temporal flood-modeling approach that integrates across these spatial zones to assess the annual probability of population exposure. We apply our model to the coastal United States to demonstrate a more robust assessment of population exposure to flooding from SLR in any given year. Our results suggest that more explicit decisions regarding spatial zone (and associated temporal implication) will improve adaptation planning and policies by indicating the relative chance and magnitude of coastal populations to be affected by future SLR.


2021 ◽  
pp. 185-206
Author(s):  
Saurabh Kaushik ◽  
Pawan Kumar Joshi ◽  
Tejpal Singh ◽  
Mohd Farooq Azam

2021 ◽  
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract Relative dominance of the runoff controls, such as topography, geology, soil types, land use, and climate, may differ from catchment to catchment due to spatial and temporal heterogeneity of landscape properties and climate variables. Understanding dominant runoff controls is an essential task in developing unified hydrological theories at the catchment scale. Semi-distributed rainfall-runoff models are often used to identify dominant runoff controls for a catchment of interest. In most such applications, the model selection is based on either expert's judgement or experimental and fieldwork insights. Model selection is the most important step in any hydrological modelling exercise as the findings are largely influenced by the selected model. Hence, a subjective model selection without sufficient expert's knowledge or experimental insights may result in biased findings, especially for comparative studies like identification of dominant runoff controls. In this study, we use a physics informed machine learning toolbox based on genetic programming Machine Induction Knowledge Augmented - System Hydrologique Asiatique (MIKA-SHA) to identify the relative dominance of runoff controls. We find the quantitative and automated approach based on MIKA-SHA to be highly appropriate for the intended task. MIKA-SHA does not require explicit user selections and relies on data and fundamental hydrological processes. The approach is tested using the Rappahannock River basin at Remington, Virginia, United States. Two rainfall-runoff models are learnt to represent the runoff dynamics of the catchment using topography-based and soil-type-based hydrologic response units independently. Based on prediction capabilities, in this case, the topography is identified as the dominant runoff driver.


Sign in / Sign up

Export Citation Format

Share Document