chlorophyll content
Recently Published Documents


TOTAL DOCUMENTS

2565
(FIVE YEARS 830)

H-INDEX

72
(FIVE YEARS 10)

2022 ◽  
Vol 7 (1) ◽  
pp. 115-121
Author(s):  
Katarína Kráľová ◽  
Renata Gašparová ◽  
Martin Moncman

A new series of carboxhydrazides 6-8 was synthesized under microwave irradiation by reaction of carboxhydrazide 1 with heterocyclic aldehydes 2-4 in the presence of p-toluenesulfonic acid in ethanol. N-Benzoylcarboxhydrazide 9 was prepared by reaction of 1 with benzoylchlorid 5 in THF at room temperature. The effects of 6-9 on inhibition of photosynthetic electron transport in spinach chloroplasts and chlorophyll content in the antialgal suspensions of Chlorella vulgaris were investigated.


2022 ◽  
Vol 14 (2) ◽  
pp. 723
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Mahmoud M. Samy ◽  
Hoda Sany ◽  
Rasha R. Eid ◽  
Hassan M. Rashad ◽  
...  

Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.


2022 ◽  
Author(s):  
Alexander Willem Copper ◽  
Stefanos Koundouras ◽  
Susan E. P. Bastian ◽  
Trent Johnson ◽  
Cassandra Collins

Abstract The world’s changing climate is placing great pressure on the resources for sustainable viticulture. With this, it has become necessary to investigate grape varieties that are well adapted to hot climates. The aims of this study were to (1) assess the response of Xynisteri to different irrigation regimes, and (2) compare the performance of Xynisteri, Maratheftiko, Shiraz and Sauvignon Blanc grown in pots with different irrigation regimes. Trial one was established in a commercial Xynisteri vineyard in Cyprus under three different irrigation regimes - full, 50% and no irrigation in 2019. Trial two compared three irrigation regimes - full, 50% and 25% in a potted trial of Xynisteri and Sauvignon Blanc conducted in Cyprus in 2019. Trial three was a potted trial of Xynisteri, Sauvignon Blanc, Maratheftiko and Shiraz with the same three irrigation regimes conducted in Australia in 2020/21. Vine performance and physiology measurements were taken in both trials. Fruit composition analysis, yield (field trial only), shoot, trunk and root mass measurements were performed at the end of the season. Few differences between measures were found between irrigation regimes in the field trial. Fruit composition analysis revealed fructose to be lowest in the full irrigation group compared to deficit and no irrigation treatments. The potted trial in 2019 demonstrated that for all three irrigation regimes, Xynisteri had higher stem water potential, stomatal conductance and chlorophyll content than Sauvignon Blanc. Xynisteri produced greater end of season root, shoot and leaf mass than Sauvignon Blanc under all irrigation regimes. In 2020/21, Xynisteri had greater end of season root, shoot and leaf mass than Maratheftiko and Sauvignon Blanc with Shiraz the lowest. Few significant differences in stem water potential were observed in the early stages of the trial. However, toward the end of the trial and with reduced irrigation, Xynisteri and Maratheftiko had higher stem water potential than Shiraz and Sauvignon Blanc. Xynisteri had higher stomatal conductance and chlorophyll content than Maratheftiko and both were higher than Sauvignon Blanc and Shiraz. These results indicate that Xynisteri in particular may possess better cultivar specific growth traits than Shiraz and Sauvignon Blanc when grown under the same environmental conditions and in turn may be a more appropriate choice in areas where water is limited.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Shakeel Ahmad ◽  
Guo-Yun Wang ◽  
Ihsan Muhammad ◽  
Muhammad Zeeshan ◽  
Xun-Bo Zhou

Waterlogging is one of the serious abiotic stresses that inhibits crop growth and reduces productivity. Therefore, investigating efficient waterlogging mitigation measures has both theoretical and practical significance. The objectives of the present research were to examine the efficiency of melatonin and KNO3 seed soaking and foliar application on alleviating the waterlogging inhibited growth performance of maize seedlings. In this study, 100 µM melatonin and different levels (0.25, 0.50 and 0.75 g) of potassium nitrate (KNO3) were used in seed soaking and foliar applications. For foliar application, treatments were applied at the 7th leaf stage one week after the imposition of waterlogging stress. The results showed that melatonin with KNO3 significantly improved the plant growth and biochemical parameters of maize seedlings under waterlogging stress conditions. However, the application of melatonin with KNO3 treatments increased plant growth characteristics, chlorophyll content, and the net photosynthetic rate at a variable rate under waterlogging stress. Furthermore, melatonin with KNO3 treatments significantly reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and it decreased the activity of pyruvate decarboxylase and alcohol dehydrogenase, while increasing enzymatic activities and soluble protein content of maize seedlings under waterlogging stress conditions. Overall, our results indicated that seed soaking with 100 µM melatonin and 0.50 g KNO3 was the most effective treatment that significantly improved the plant growth characteristics, chlorophyll content, photosynthetic rate, and enzymatic activity of maize seedling under waterlogging conditions.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Kunyan Zou ◽  
Ki-Seung Kim ◽  
Dongwoo Kang ◽  
Min-Cheol Kim ◽  
Jungmin Ha ◽  
...  

The content of chlorophyll, a fundamental component required for photosynthesis in plants, has been widely studied across crop species. In this study, we aimed to evaluate the genetic diversity of 453 peanut accessions. We evaluated the evolutionary relationships using a genome-wide association study (GWAS) of leaf color data based on chlorophyll content analysis using the Axiom_Arachis array containing 58K single-nucleotide polymorphisms (SNPs). We identified seven SNPs as being significantly associated with leaf chlorophyll content on the chromosomes Aradu.A02, Aradu.A08, Araip.B02, Araip.B05, Araip.B06, and Araip.B08 in a GAPIT analysis. The SNP AX-176820297 on Araip.B05 was significantly linked with leaf chlorophyll content across the seasons. The Arahy.SDG4EV gene was detected to be in linkage disequilibrium (LD) with the significant SNPs, and its expression was significantly correlated with leaf chlorophyll content. The results of the current study provide useful and fundamental information with which to assess genetic variations in chlorophyll content and can be utilized for further genetic and genomic studies and breeding programs in peanuts.


2022 ◽  
Vol 12 ◽  
Author(s):  
Pranjali A. Gedam ◽  
Dhananjay V. Shirsat ◽  
Thangasamy Arunachalam ◽  
Sourav Ghosh ◽  
Suresh J. Gawande ◽  
...  

Onion production is severely affected by waterlogging conditions, which are created due to heavy rainfall. Hence, the identification of waterlogging-tolerant onion genotypes is crucial for increasing onion production. In the present study, 100 distinct onion genotypes were screened for waterlogging tolerance under artificial conditions by using the phenotypic approach in the monsoon season of 2017. Based on plant survival and recovery and changes in bulb weight, we identified 19 tolerant, 27 intermediate tolerant, and 54 highly sensitive onion genotypes. The tolerant genotypes exhibited higher plant survival and better recovery and bulb size, whereas sensitive genotypes exhibited higher plant mortality, poor recovery, and small bulb size under waterlogging conditions. Furthermore, a subset of 12 contrasting genotypes was selected for field trials during monsoon seasons 2018 and 2019. Results revealed that considerable variation in the morphological, physiological, and yield characteristics were observed across the genotypes under stress conditions. Waterlogging-tolerant genotypes, namely, Acc. 1666, Acc. 1622, W-355, W-208, KH-M-2, and RGP-5, exhibited higher plant height, leaf number, leaf area, leaf length, chlorophyll content, membrane stability index (MSI), pyruvic acid, antioxidant content, and bulb yield than sensitive genotypes under stress conditions. Furthermore, the principal component analysis biplot revealed a strong association of leaf number, leaf area, chlorophyll content, MSI, and bulb yield with tolerant genotypes under stress conditions. The study indicates that the waterlogging-tolerant onion genotypes with promising stress-adaptive traits can be used in plant breeding programs for developing waterlogging-tolerant onion varieties.


2022 ◽  
Author(s):  
Ruicai Han ◽  
Chenyan Li ◽  
Huijie Li ◽  
Yupeng Wang ◽  
Xiaohua Pan ◽  
...  

Abstract Nitrate reductase (NR) is an important enzyme for nitrate assimilation in plants, and its activity is regulated by post-translational phosphorylation. To investigate the effect of NIA1 protein dephosphorylation on the growth of rice and its adaptability to low temperature, we analyzed phenotype, chlorophyll content, nitrogen utilization, and antioxidant capacity at low temperature in lines with a mutated NIA1 phosphorylation site (S532D and S532A), an OsNia1 over-expression line (OE), and wild-type Kitaake rice (WT). Plant height, dry matter weight, and chlorophyll content of S532D and S532A were lower than those of WT and OE under normal growth conditions but were higher than those of WT and OE at low temperature. Compared with WT and OE, the nitrite, H2O2, and MDA contents of S532D and S532A leaves were higher under normal growth conditions. The difference in leaf nitrite content between transgenic lines and WT was narrower at low temperature, especially in S532D and S532A, while H2O2 and MDA contents of S532D and S532A leaves were lower than those in WT and OE leaves. The NH4+-N and amino acid contents of S532D and S532A leaves were higher than those of WT and OE leaves under normal or low temperature. qRT-PCR results revealed that transcription levels of OsNrt2.4, OsNia2, and OsNADH-GOGAT were positively correlated with those of OsNia1, and the transcription levels of OsNrt2.4, OsNia2, and OsNADH-GOGAT were significantly higher in transgenic lines than in WT under both normal and low temperature. Phosphorylation of NR is a steady-state regulatory mechanism of nitrogen metabolism, and dephosphorylation of NIA1 protein improved NR activity and nitrogen utilization efficiency in rice. Excessive accumulation of nitrite under normal growth conditions inhibits the growth of rice; however, accumulation of nitrite is reduced at low temperature, enhancing the cold tolerance of rice.


Sign in / Sign up

Export Citation Format

Share Document