scholarly journals Normal Polytopes and Ellipsoids

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Joseph Gubeladze

We show that: (1) unimodular simplices in a lattice 3-polytope cover a neighborhood of the boundary of the polytope if and only if the polytope is very ample, (2) the convex hull of lattice points in every ellipsoid in $\mathbb{R}^3$ has a unimodular cover, and (3) for every $d\geqslant 5$, there are ellipsoids in $\mathbb{R}^d$, such that the convex hulls of the lattice points in these ellipsoids are not even normal. Part (c) answers a question of Bruns, Michałek, and the author.

2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


2009 ◽  
Vol 20 (04) ◽  
pp. 647-667
Author(s):  
FRANÇOIS CANTIN ◽  
AXEL LEGAY ◽  
PIERRE WOLPER

This paper considers the problem of computing the real convex hull of a finite set of n-dimensional integer vectors. The starting point is a finite-automaton representation of the initial set of vectors. The proposed method consists in computing a sequence of automata representing approximations of the convex hull and using extrapolation techniques to compute the limit of this sequence. The convex hull can then be directly computed from this limit in the form of an automaton-based representation of the corresponding set of real vectors. The technique is quite general and has been implemented.


2013 ◽  
Vol 45 (04) ◽  
pp. 917-924
Author(s):  
Christian Buchta

The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P 1,…, P n distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ n of points among P 1,…, P n , which are vertices of the convex hull of (0, 1), P 1,…, P n , and (1, 0). Correspondingly, D̃ n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ n and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).


Fractals ◽  
2018 ◽  
Vol 26 (06) ◽  
pp. 1850098
Author(s):  
T. D. TAYLOR ◽  
S. ROWLEY

This paper presents an investigation of the convex hulls of the Sierpiński relatives. These fractals all have the same fractal dimension but different topologies. We prove that the relatives have convex hulls with polygonal boundaries with at most 12 vertices. We provide a method for finding the convex hull of a relative using its scaling and symmetry properties and present examples. We also investigate the connectivity properties of certain classes of relatives with the same convex hulls.


2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
David S. Campo ◽  
Yury Khudyakov

Abstract Background In molecular epidemiology, comparison of intra-host viral variants among infected persons is frequently used for tracing transmissions in human population and detecting viral infection outbreaks. Application of Ultra-Deep Sequencing (UDS) immensely increases the sensitivity of transmission detection but brings considerable computational challenges when comparing all pairs of sequences. We developed a new population comparison method based on convex hulls in hamming space. We applied this method to a large set of UDS samples obtained from unrelated cases infected with hepatitis C virus (HCV) and compared its performance with three previously published methods. Results The convex hull in hamming space is a data structure that provides information on: (1) average hamming distance within the set, (2) average hamming distance between two sets; (3) closeness centrality of each sequence; and (4) lower and upper bound of all the pairwise distances among the members of two sets. This filtering strategy rapidly and correctly removes 96.2% of all pairwise HCV sample comparisons, outperforming all previous methods. The convex hull distance (CHD) algorithm showed variable performance depending on sequence heterogeneity of the studied populations in real and simulated datasets, suggesting the possibility of using clustering methods to improve the performance. To address this issue, we developed a new clustering algorithm, k-hulls, that reduces heterogeneity of the convex hull. This efficient algorithm is an extension of the k-means algorithm and can be used with any type of categorical data. It is 6.8-times more accurate than k-mode, a previously developed clustering algorithm for categorical data. Conclusions CHD is a fast and efficient filtering strategy for massively reducing the computational burden of pairwise comparison among large samples of sequences, and thus, aiding the calculation of transmission links among infected individuals using threshold-based methods. In addition, the convex hull efficiently obtains important summary metrics for intra-host viral populations.


2010 ◽  
Vol 42 (3) ◽  
pp. 620-630
Author(s):  
Y. Davydov ◽  
A. Nagaev ◽  
A. Philippe

In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.


Author(s):  
Isakjan M. Khamdamov ◽  
Zoya S. Chay

A convex hull generated by a sample uniformly distributed on the plane is considered in the case when the support of a distribution is a convex polygon. A central limit theorem is proved for the joint distribution of the number of vertices and the area of a convex hull using the Poisson approximation of binomial point processes near the boundary of the support of distribution. Here we apply the results on the joint distribution of the number of vertices and the area of convex hulls generated by the Poisson distribution given in [6]. From the result obtained in the present paper, in particular, follow the results given in [3, 7], when the support is a convex polygon and the convex hull is generated by a homogeneous Poisson point process


2019 ◽  
Vol 56 (4) ◽  
pp. 959-980
Author(s):  
Weinan Qi ◽  
Mahmoud Zarepour

AbstractThe convex hull of a sample is used to approximate the support of the underlying distribution. This approximation has many practical implications in real life. To approximate the distribution of the functionals of convex hulls, asymptotic theory plays a crucial role. Unfortunately most of the asymptotic results are computationally intractable. To address this computational intractability, we consider consistent bootstrapping schemes for certain cases. Let $S_n=\{X_i\}_{i=1}^{n}$ be a sequence of independent and identically distributed random points uniformly distributed on an unknown convex set in $\mathbb{R}^{d}$ ($d\ge 2$ ). We suggest a bootstrapping scheme that relies on resampling uniformly from the convex hull of $S_n$ . Moreover, the resampling asymptotic consistency of certain functionals of convex hulls is derived under this bootstrapping scheme. In particular, we apply our bootstrapping technique to the Hausdorff distance between the actual convex set and its estimator. For $d=2$ , we investigate the asymptotic consistency of the suggested bootstrapping scheme for the area of the symmetric difference and the perimeter difference between the actual convex set and its estimate. In all cases the consistency allows us to rely on the suggested resampling scheme to study the actual distributions, which are not computationally tractable.


2013 ◽  
Vol 45 (4) ◽  
pp. 917-924 ◽  
Author(s):  
Christian Buchta

The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P1,…, Pn distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñn of points among P1,…, Pn, which are vertices of the convex hull of (0, 1), P1,…, Pn, and (1, 0). Correspondingly, D̃n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñn and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).


1992 ◽  
Vol 29 (04) ◽  
pp. 814-824
Author(s):  
Paul Blackwell

This paper considers sets of points from a Poisson process in the plane, chosen to be close together, and their properties. In particular, the perimeter of the convex hull of such a point set is investigated. A number of different models for the selection of such points are considered, including a simple nearest-neighbour model. Extensions to marked processes and applications to modelling animal territories are discussed.


Sign in / Sign up

Export Citation Format

Share Document