scholarly journals Nilpotent Singer Groups

10.37236/1120 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nick Gill

Let $N$ be a nilpotent group normal in a group $G$. Suppose that $G$ acts transitively upon the points of a finite non-Desarguesian projective plane ${\cal P}$. We prove that, if ${\cal P}$ has square order, then $N$ must act semi-regularly on ${\cal P}$. In addition we prove that if a finite non-Desarguesian projective plane ${\cal P}$ admits more than one nilpotent group which is regular on the points of ${\cal P}$ then ${\cal P}$ has non-square order and the automorphism group of ${\cal P}$ has odd order.

10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


2013 ◽  
Vol 104 (1) ◽  
pp. 11-43 ◽  
Author(s):  
Daniele Bartoli ◽  
Alexander A. Davydov ◽  
Giorgio Faina ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

Author(s):  
Mauro Biliotti ◽  
Gabor Korchmaros

AbstractIn this paper we investigate the structure of a collineation group G of a finite projective plane Π of odd order, assuming that G leaves invariant an oval Ω of Π. We show that if G is nonabelian simple, then G ≅ PSL(2, q) for q odd. Several results about the structre and the action of G are also obtained under the assumptions that n ≡ 1 (4) and G is transitive on the points of Ω.


1978 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Richard J. Greechie

AbstractA construction is given for a non-desarguesian projective plane P and an absolute-point free polarity on P such that the group of collineations of P which commute with the polarity is isomorphic to an arbitrary preassigned finite group.


2020 ◽  
Vol 115 (6) ◽  
pp. 599-609
Author(s):  
Rachel D. Camina ◽  
Ainhoa Iñiguez ◽  
Anitha Thillaisundaram

AbstractLet w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that $$N_w(1)\ge |G|^{k-1}$$ N w ( 1 ) ≥ | G | k - 1 , where for $$g\in G$$ g ∈ G , the quantity $$N_w(g)$$ N w ( g ) is the number of k-tuples $$(g_1,\ldots ,g_k)\in G^{(k)}$$ ( g 1 , … , g k ) ∈ G ( k ) such that $$w(g_1,\ldots ,g_k)={g}$$ w ( g 1 , … , g k ) = g . Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit’s conjecture, which states that $$N_w(g)\ge |G|^{k-1}$$ N w ( g ) ≥ | G | k - 1 for g a w-value in G, and prove that $$N_w(g)\ge |G|^{k-2}$$ N w ( g ) ≥ | G | k - 2 for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850065
Author(s):  
Alireza Abdollahi ◽  
Majid Arezoomand

Let [Formula: see text] be any group and [Formula: see text] be a subgroup of [Formula: see text] for some set [Formula: see text]. The [Formula: see text]-closure of [Formula: see text] on [Formula: see text], denoted by [Formula: see text], is by definition, [Formula: see text] The group [Formula: see text] is called [Formula: see text]-closed on [Formula: see text] if [Formula: see text]. We say that a group [Formula: see text] is a totally[Formula: see text]-closed group if [Formula: see text] for any set [Formula: see text] such that [Formula: see text]. Here we show that the center of any finite totally 2-closed group is cyclic and a finite nilpotent group is totally 2-closed if and only if it is cyclic or a direct product of a generalized quaternion group with a cyclic group of odd order.


Sign in / Sign up

Export Citation Format

Share Document