scholarly journals Partitions, Kostka Polynomials and Pairs of Trees

10.37236/18 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Eliana Zoque

Bennett et al. presented a recursive algorithm to create a family of partitions from one or several partitions. They were mainly interested in the cases when we begin with a single square partition or with several partitions with only one part. The cardinalities of those families of partitions are the Catalan and ballot numbers, respectively. In this paper we present a non-recursive description for those families and prove that the generating function of the size of those partitions is a Kostka number. We also present bijections between those sets of partitions and sets of trees and forests enumerated by the Catalan an ballot numbers, respectively.

10.37236/6376 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Paul Drube

An inverted semistandard Young tableau is a row-standard tableau along with a collection of inversion pairs that quantify how far the tableau is from being column semistandard. Such a tableau with precisely $k$ inversion pairs is said to be a $k$-inverted semistandard Young tableau. Building upon earlier work by Fresse and the author, this paper develops generating functions for the numbers of $k$-inverted semistandard Young tableaux of various shapes $\lambda$ and contents $\mu$. An easily-calculable generating function is given for the number of $k$-inverted semistandard Young tableaux that "standardize" to a fixed semistandard Young tableau. For $m$-row shapes $\lambda$ and standard content $\mu$, the total number of $k$-inverted standard Young tableaux of shape $\lambda$ is then enumerated by relating such tableaux to $m$-dimensional generalizations of Dyck paths and counting the numbers of "returns to ground" in those paths. In the rectangular specialization of $\lambda = n^m$ this yields a generating function that involves $m$-dimensional analogues of the famed Ballot numbers. Our various results are then used to directly enumerate all $k$-inverted semistandard Young tableaux with arbitrary content and two-row shape $\lambda = a^1 b^1$, as well as all $k$-inverted standard Young tableaux with two-column shape $\lambda=2^n$.


10.37236/1942 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Kendra Killpatrick

The widely studied $q$-polynomial $f^{\lambda}(q)$, which specializes when $q=1$ to $f^{\lambda}$, the number of standard Young tableaux of shape $\lambda$, has multiple combinatorial interpretations. It represents the dimension of the unipotent representation $S_q^{\lambda}$ of the finite general linear group $GL_n(q)$, it occurs as a special case of the Kostka-Foulkes polynomials, and it gives the generating function for the major index statistic on standard Young tableaux. Similarly, the $q$-polynomial $g^{\lambda}(q)$ has combinatorial interpretations as the $q$-multinomial coefficient, as the dimension of the permutation representation $M_q^{\lambda}$ of the general linear group $GL_n(q)$, and as the generating function for both the inversion statistic and the charge statistic on permutations in $W_{\lambda}$. It is a well known result that for $\lambda$ a partition of $n$, $dim(M_q^{\lambda}) = \Sigma_{\mu} K_{\mu \lambda} dim(S_q^{\mu})$, where the sum is over all partitions $\mu$ of $n$ and where the Kostka number $K_{\mu \lambda}$ gives the number of semistandard Young tableaux of shape $\mu$ and content $\lambda$. Thus $g^{\lambda}(q) - f^{\lambda}(q)$ is a $q$-polynomial with nonnegative coefficients. This paper gives a combinatorial proof of this result by defining an injection $f$ from the set of standard Young tableaux of shape $\lambda$, $SYT(\lambda)$, to $W_{\lambda}$ such that $maj(T) = ch(f(T))$ for $T \in SYT(\lambda)$.


1985 ◽  
Vol 50 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Vilém Kodýtek

The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a generating function of the MM system of thermodynamic quantities for solutions in the state of osmotic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, and m in the definition of the Lewis-Randall (LR) system by AMM, T, P0, and c (P0 being the pure solvent pressure). Following this way the LR to MM conversion relations for the first derivatives of the free energy are obtained in a simple form. New relations are derived for its second derivatives.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


Sign in / Sign up

Export Citation Format

Share Document